
Progress in TB Product Development April 2013

Prasit Palittapongarnpim, M.D.

TB Vaccines

Viral vector vaccines, Recombinant protein vaccines, Inactivated whole cell vaccines, Recombinant live BCG

Immunization Strategies- P: priming vaccine (replace BCG), B: booster vaccine (after P or BCG prime), PI: Post infection booster vaccine, IT: immunotherapy (used in conjunction with drugs)

AERAS Vaccine Portfolio

MVA85A/Aeras-485 (Modified Vaccinia Ankara expressing Ag85A)

MVA

- Vaccinia virus passaged >500 times in chicken embryo fibroblasts
- 31 kb deletions (losing host specificity and cytokine induction)
- Not growing in mammalian cells but grow in chicken embryo fibroblasts.
- Used as vaccines for eradication of small pox with excellent safety record.
- Not replicated in immunosuppressed macaques
- MVA-HIV-Nef appear safe in HIV+ve.
- Recombinant MVA in clinical trials include: HIV, HBV and malaria

Ag85A

- A part of Ag85 complex (A,B and C)
- Mycolyl transferases
- Immunodominant major secretory proteins
- Confer some protection in animals
- Relating to cord formation

MVA85A were shown to stimulate CD4+ and CD8+ T cells as well as protections in animal models

- Mice
 - Ag85A DNA-MVA85A prime-boost regimen
 - BCG-MVA85A prime-boost protocol
- Guinea pigs
 - BCG-MVA85A prime-boost protocol
- Macaques
 - BCG-MVA85A-FP85A for immunological response only

MVA85A Phase I studies (MVA85A 5x10⁷ pfu id.)

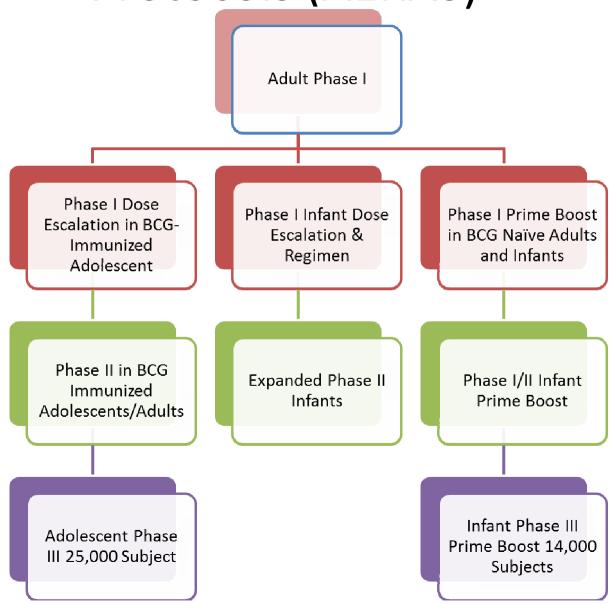
- To show safety in
 - Naive population:
 - no BCG history and scar,
 - -ve tuberculin test,
 - -ve ex vivo IFN-γ Elispot assay
 - --ve response to ESAT 6, CFP 10 and PPD.
 - BCG-vaccinated populations- (Scriba et. al. Eur J Immunol 2010;40:279-290)
 - M. tuberculosis infected populations checking for the Koch reaction.

MVA85A/AERAS-485 Phase IIb Proof of Concept Efficacy Trial

- First efficacy trial of a new TB vaccine in infants in more than 80 years (proof of principle)
- 2,800 infants with prior BCG vaccination 90% power for 60% efficacy compared to BCG

 In collaboration with South African Tuberculosis Vaccine Initiative (SATVI), Oxford-Emergent

Tuberculosis Consortium (OETC) and Welcome Trust


 First infant vaccinated 15 July, 2009, by SATVI. The trial ended May 2012.

Lancet 4 Feb 2013

- MVA85A vaccine trial in Cape Western, South Africa, 2797 infants
- Design: Randomized double blind boost vaccine at age 4-6 months for BCG (Denmark strain) vaccinated infants. Control: Candida skin test antigen.
- Protection efficacy for TB = 17% and for M.
 tuberculosis infection = -3% (both being statistically insignificant). Tolerable side effects.

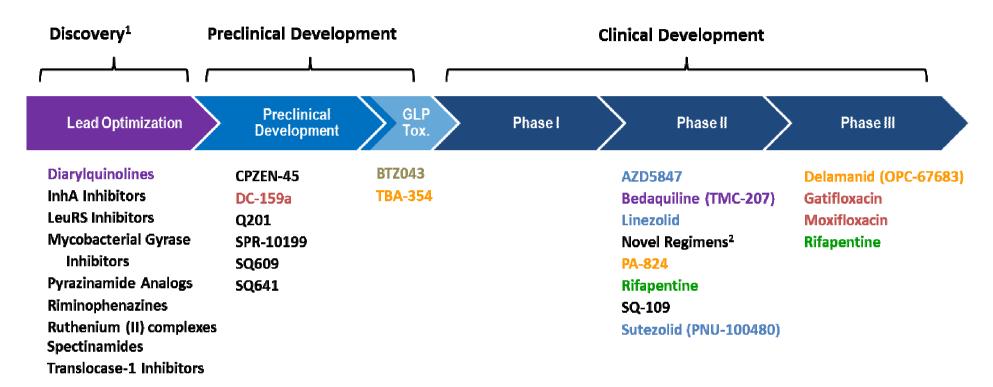
New TB Vaccines Clinical Trial Protocols (AERAS)

Aeras-402/Crucell Ad35

Adenovirus 35 vector

- Replication deficient (E1deleted)
- Consistently induce high levels of CD8+ T cell responses
- Efficient manufacturing technology
- Rare serotype in nature

Ag85A-Ag85B-TB10.4 fusion proteins


Aeras-402/Crucell Ad35

- Preclinical study
 - Mice (Radosevic et.al. Infect Immun 2007;75:4105-4115.)

Clinical Trials Table AERAS-402/Crucell Ad35

•	PROTOCOL NUMBER	DESCRIPTION	LOCATION	STATUS
•	C-001-402Phase I	Adults, BCG-unvaccinated	USA	Completed
•	C-003-402Phase I	Adults, BCG-vaccinated	South Africa	Completed
•	C-008-402Phase I	Adults, BCG unvaccinated Receive BCG Prime USA		Completed
•	C-009-402Phase I	Adults, BCG unvaccinated Receive BCG Prime; double- blinded, placebo control USA		Ongoing
•	C-010-402Phase II Ongoing	Adults, Previous TB	South Af	rica
•	C-012-402Phase I	Adults, BCG vaccinated	Kenya	Ongoing
•	C-017-402Phase IIb	Adults, HIV-infected, Latent TB, BCG Vaccinated	South Africa	Ongoing
•	C-018-402Phase I	Infants, <2 years, BCG vaccinated South Africa		Ongoing
•	C-021-402Phase I	Adults, BCG unvaccinated, Receive BCG Prime USA		Ongoing
•	C-022-402Phase I	Adults, BCG unvaccinated, Receive BCG Prime	USA	Completed

Global TB Drug Pipeline

Chemical classes: fluoroquinolone, rifamycin, oxazolidinone, nitroimidazole, diarylquinoline, benzothiazinone

² Combination regimens: first clinical trial (NC001) of a novel TB drug regimen testing the three drug combination of PA-824, moxifloxacin, and pyrazinamide was initiated November 2010 and completed in 2011 with promising results. The second clinical trial (NC002) of this regimen was launched in March 2012 and will test the efficacy of the regimen in drug-sensitive and multidrug-resistant patients. The third clinical trial (NC003) will evaluate PA-824, TMC-207, pyrazinamide and clofazimine in combinations and is scheduled to begin September 2012.

www.newtbdrugs.org

Updated: November 13, 2012

¹ Ongoing projects without a lead compound series can be viewed at http://www.newtbdrugs.org/pipeline-discovery.php.

Global TB Drug Discovery Pipeline 1

Hit-to-Lead

Actinomycete Metabolites (U ILL Chicago, Myongii U)

ATP Synthesis Inhibitors (GATB, Scripps)

DprE Inhibitors (GATB, Scripps)

Fungal Metabolites (Mycosynthetix, U ILL Chicago)

Indigoids (U ILL Chicago)

Isoprenoid Biosynthesis Inhibitors (Lilly Ddi)

M. tb Energy Metabolism Inhibitors (UPenn, GATB)

M. tb Protein Kinase Inhibitors (Vertex Pharmaceuticals)

Malate Synthase Inhibitors (GSK, TAMU, GATB)

Menaquinone Synthase Inhibitors (CSU, GATB)

Novel Hit-to-Lead Programs (Lilly DDi)

Phenotype Hit-to-Lead (AZ; GSK, GATB; Lilly DDi)

Lead Optimization

Diarylquinoline (GATB, U Auckland, Janssen)
InhA Inhibitor (GSK, GATB)
LeuRS Inhibitor (Anacor Pharmaceuticals)
Mycobacterial Gyrase Inhibitors (GATB, GSK)
Pyrazinamide Analogs (GATB, Yonsei U)
Riminophenazines (GATB, IMM, BRI, U ILL Chicago)
Ruthenium(II)phosphine/picolinate Complexes
(FAPESP/Brazil)

Spectinamides (St. Jude, U Tenn, CSU, UZ, Microbiotix)

Translocase-1 Inhibitor (Sequella)

Abbreviations of Developers: AZ-AstraZeneca; BRI-Beijing Tuberculosis and Thoracic Tumor Research Institute; CSU-Colorado State University; FAPESP-São Paulo Research Foundation; GATB-Global Alliance for TB Drug Development (TB Alliance); GSK-GlaxoSmithKline; IMM-Institute of Materia Medica; Lilly DDi-Lilly TB Drug Discovery Initiative; RI-Research Institute; St. Jude-St. Jude Children's Research Hospital; TAMU-Texas A&M University; U-University; U ILL-University of Illinois; UPenn-University of Pennsylvania; UTenn-University of Tennessee; UZ-University of Zurich

www.newtbdrugs.org

Updated: August 10, 2012

¹ Ongoing projects in clinical development can be viewed at http://www.newtbdrugs.org/pipeline.php

A randomized dose-ranging study of the 14-day early bactericidal activity of bedaquiline (TMC207) in patients with sputum microscopy smearpositive pulmonary tuberculosis

Antimicrob. Agents Chemother. AAC.02243-12; published ahead of print 4 March 2013, The Diarylquinoline TMC207 for Multidrug-Resistant Tuberculosis

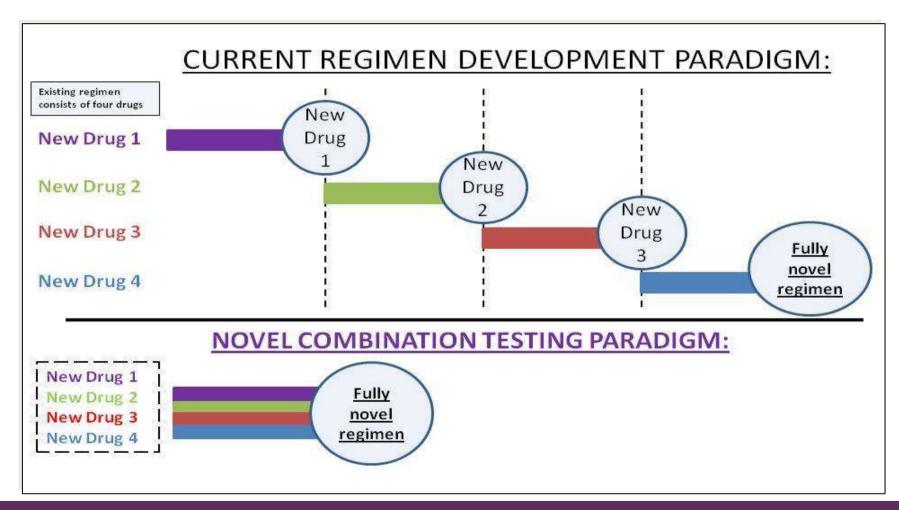
Sirturo (bedaquiline) Janssen

- In December 2012 the FDA gave approval for the drug to be used as part of combination therapy to treat adults with MDR-TB, when no other alternatives are available. The drug does potentially have serious side effects, including affecting the electrical activity of the heart.
- In September 2012 a Marketing Authorization Application was made to the European Medicines Agency, also for the use of bedaquiline as part of combination therapy treatment for MDR TB in adults.
- Two phase 2 studies of the drug have taken place in patients with MDR TB. The results of these trials have already been presented at the Union World TB conferences in 2010 and 2011.
- A phase 3 trial of bedaquiline, TMC207-C210, is due to start in March 2013. It will be a double blind study of 600 patients with sputum smear positive MDR-TB, which will compare TB treatment with bedaquiline and a background regimen, with placebo and a background regimen.
- Compassionate use of bedaquiline is now available in several European countries, and is available in South Africa on a limited basis.

The NEW ENGLAND JOURNAL of MEDICINE

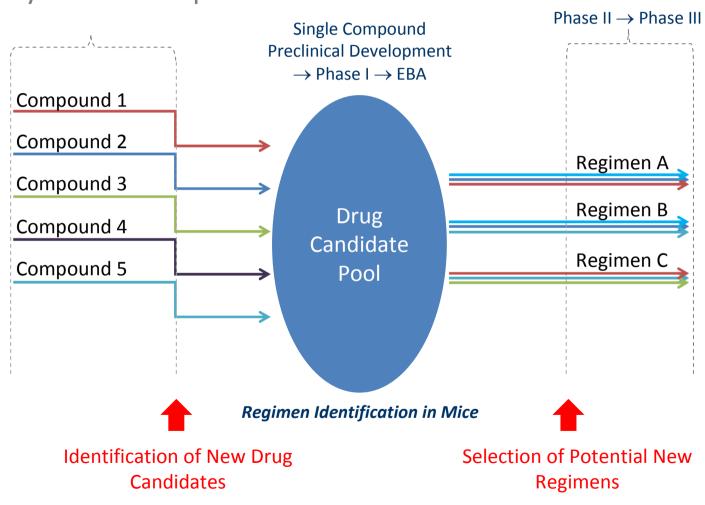
ESTABLISHED IN 1812

JUNE 7, 2012


VOL. 366 NO. 23

Delamanid (OPC-67683) Otsuka

Delamanid for Multidrug-Resistant Pulmonary Tuberculosis


- Nitroimidazoles, OPC-67683 (Delamanid) and PA-824 are under development as potential TB drugs. Another drug in the same class is TBA-354.
- Delamanid is a member of the nitroimidazo-oxazole family, currently being initially developed by Otsuka as a treatment for MDR-TB.
- In July 2012 the results of a phase 2B trial showed delamanid plus a background regimen resulted in more study subjects becoming non-infectious after two months than a placebo plus a background regimen. The trial was conducted in 17 centres in nine countries.-Among patients who received a background regimen plus 100 mg of delamanid twice daily, 45.4% had culture conversion at two months as compared with 29.6% of patients who received background plus placebo.
- Patients who took part in two earlier studies were also then able to take part in a 24 month observational study designed to look at treatment outcomes. This observational study found that favourable outcomes were observed in about ¾ of the patients who received Delamanid for more than 6 months as compared to about ½ of the patients who received Delamanid for less than 2 months.²⁰
- Otsuka has started a phase 3 trial of Delamanid. The trial which started in September 2011, is designed to show whether Delamanid is both safe and effective when given as TB drug treatment over a six month period. The completion date for the first tests of effectiveness is August 2013. ²¹

Paradigm Change in TB Drug Development

The Context:

Approach to TB Drug/Regimen Development Discovery and Development Process

From Drugs to Regimens

- REMOX-TB trial for the treatment of adults with pulmonary tuberculosis.
- 2 months M, H, R, Z followed by 2 months MHR
- 2 months M, E, R, Z followed by two months MR
- Trial NC001: Evaluation of Early Bactericidal Activity in Pulmonary Tuberculosis With(J-M-Pa-Z)
- **Trial** NC002: Phase II Trial to Evaluate the Efficacy, Safety and Tolerability of the Following: PA-824 Plus Moxifloxacin Plus Pyrazinamide in Drug Sensitive and Multi-Drug Resistant Patients
- **Trial** NC003: Evaluation of Early Bactericidal Activity in Pulmonary Tuberculosis With Clofazimine (C)-TMC207 (J)-PA-824 (Pa)-Pyrazinamide (Z)

TB Alliance Pipeline – Nov '12

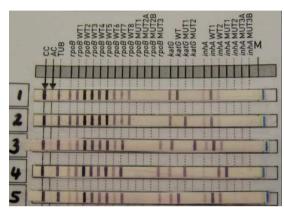
	New Drug Discove	ry	Preclinical Development	Clinical Development	Regimer	n Development
TARGET OR CELL- BASED SCREENING	LEAD IDENTIFICATION	LEAD OPTIMIZATION		CLINICAL PHASE I	CLINICAL PHASE II	CLINICAL PHASE III
Topoisomerase I Inhibitors AZ/NYMC	Whole-Cell Hit to Lead Program GSK	Mycobacterial Gyrase Inhibitors GSK	TBA-354 U. of Auck/ U. III Chi		Orugs	Moxifloxacin (+ H, R, Z) Bayer Enrollment completed
TB Drug Discovery Po NITD	rtfolio	THPP Series GSK	Preclinical TB Regimen Testing JHU/U. III Chi		New Drugs	Moxifloxacin (+ R, Z, E) Bayer Enrollment completed
	Energy Metabolism Inhibitors AZ/U. Penn	Pyrazinamide Analogs Yonsei			PA-824/Moxifloxacin/ Pyrazinamide	
	Folate Biosynthesis Inhibitors AZ	Diarylquinolines Jan/U. of Auck			71/0007/	
	Whole-Cell Hit to Lead Program AZ	Riminophenazines IMM/BTTTRI		-	PA-824/ Pyrazinamide TMC207/PA-824/ Clofazamine TMC207 /Pyrazinamide	2/
	RNA Polymerase Inhibitors AZ	DprE Inhibitors Scripps			TMC207/PA-824/ Pyrazinamide/ Clofazamine	
	Gyrase B Inhibitors AZ	Macrolides Sanofi				
	ATP Synthase Inhibitors Scripps	Cyclopeptides Sanofi		Regimen	PA-824/Pyrazinamide	
		Whole-Cell Leads Sanofi		Reg	TMC207 /Pyrazinamid	е

Novel TB regimen development

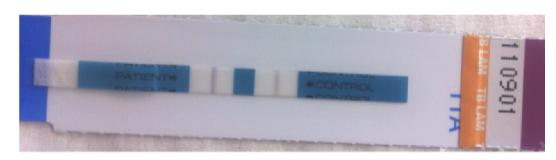
Our R&D Partners						
AZ	AstraZeneca	JHU	Johns Hopkins University	U. of Auck	University of Auckland	
Bayer	Bayer Healthcare AG	NITD	Novartis Institute for Tropical Diseases	U. III Chi	University of Illinois at Chicago	
BTTTRI	Beijing Tuberculosis and Thoracic Tumor Research Institute	Novartis	Novartis Pharmaceutical	U. Penn	University of Pennsylvania School of Medicine	
GSK	GlaxoSmithKline	NYMC	New York Medical College	Yonsei	Yonsei University	
IMM	Institute of Materia Medica	Sanofi	sanofi-aventis			
Jan	Janssen (of Johnson & Johnson)	Scripps	Scripps Research Institute			

Diagnostics

Approved by


WHAK	Concept	Feasibility	Develop ment	Evaluation	Demonstration	Implementation (Approved by WHO/STAG)
Reference laboratory level						Liquid Culture & DST Rapid Speciation Line Probe Assay (1st line drugs)
District / peripheral level		Rapid Colorimetric DST			LAMP TB	LED florescence microscopy Xpert MTB/RIF
Community Level (POC)	<u>LFI sensitivity</u> <u>increase</u>	Antibody detection Antigen detection	<u>β-lactamase</u> <u>detection</u>			

The Rapid March of Diagnostic Technology


LED Microscopy*

 Line probe assays for MDR

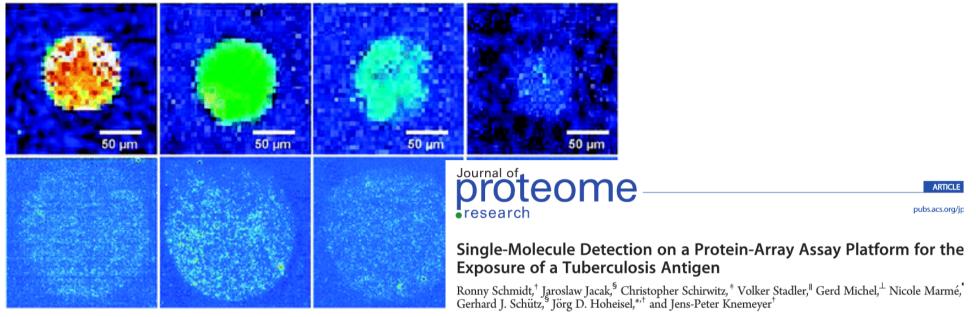
Urine LAM dipstick**

GeneXpert TB/RIF*

^{*}BSL-3 not required

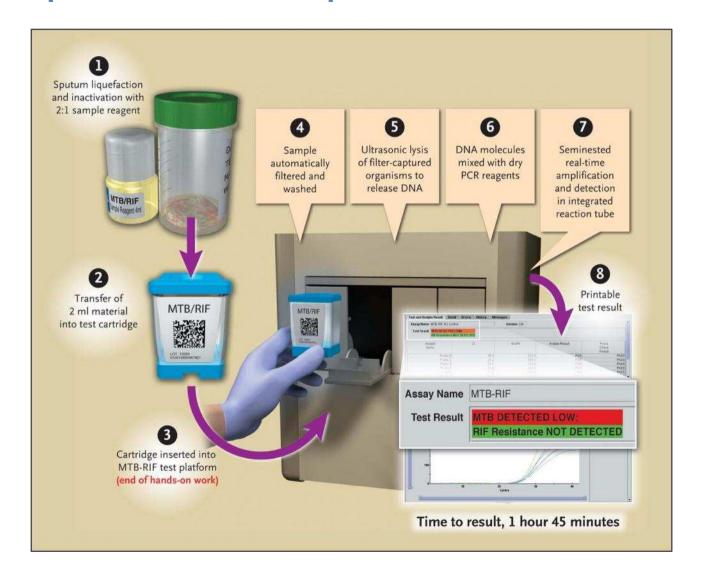
^{**} Point of care test

Diagnostics


- Xpert MTB/RIF assay confirms the high accuracy in a range of settings, including inpatients, HIV coinfection and in children with culture-positive disease. Early experiences with operational implementation are now being reported from South Africa.
- Initial small-scale evaluations suggest that newer versions of line-probe assays have accuracy similar to that of the Xpert MTB/RIF assay.
- LAMP may in the future be more readily implemented at the point of care.
- The first low-cost, lateral-flow (strip-test) assay for lipoarabinomannan (LAM) in urine shows promise as a rapid point-of-care test for TB amongst advanced HIVinfections.

Urine Assay

 Rationale: If TB antigens are present in body fluids, these will be present in very low concentrations and will require highly sensitive detection methods. Appropriate point-of-care (POC) platform technologies for highly sensitive analyte detection, as well as an ultrasensitive immunoassay platform are required as reference methods for POC test development.


Project description

- FIND and partners identified and evaluated the most sensitive POC platforms, using LAM antigen detection as a case model. The detection limits of products were compared across various assay formats and types of signal detection, including colorimetric, fluorescent and chemoluminescent. Our data indicates that analyte concentrations in the picomolar to low nanomolar range are detected by at least three of the evaluated POC platforms.
- Moreover, FIND and partners established a reference method able to detect LAM at an unprecedented concentration of several hundred molecules (10⁻¹⁴ to 10⁻¹³ mol/l).

- A platform based on a single-molecule sensitive fluorescence-linked immunosorbent assay could detect LAM was with about 3 orders of magnitude more sensitivity than ELISA. No amplification or sample preparation was required. Since individual binding events are detected, true quantification was possible simply by counting individual signals. Utilizing a total internal reflection configuration, unprocessed human urine and plasma to which LAM was added could be analyzed without sample purification or washing steps. Samples containing about 600 antigen molecules/microliter produced a distinct signal. The method can be employed for any set of target molecules for which appropriate antibodies exist.
- *J. Proteome Res.*, **2011**, *10* (3), pp 1316–1322

Cepheid GeneXpert MTB/RIF Test

GeneXpert MTB/RIF Performance Characteristics

No. Sputums Tested	Sensitivity		
3 Sputum Samples			
Sensitivity, all	97.4%		
Smear-positive	99.8%		
Smear-negative	90.2%		
1 Sputum Sample			
Sensitivity, all	92.2%		
Smear-positive	98.2%		
Smear-negative	72.5%		

Sensitivity HIV+→ 93.9%

• Sensitivity HIV-→ 98.4%

Specificity 98.1 – 99.2% Sensitivity for RIF-resistance 99.1%

Performance of Xpert MTB/RIF vs. other diagnostic modalities

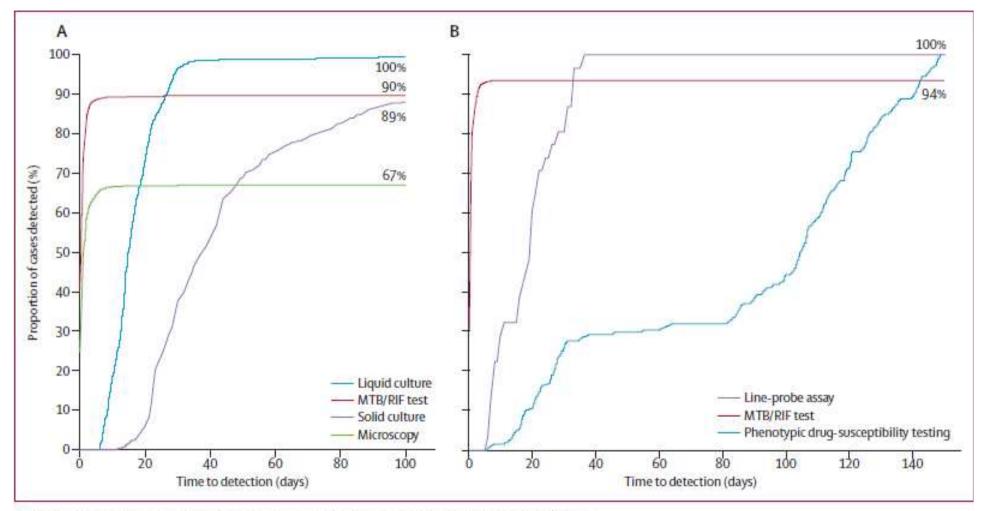
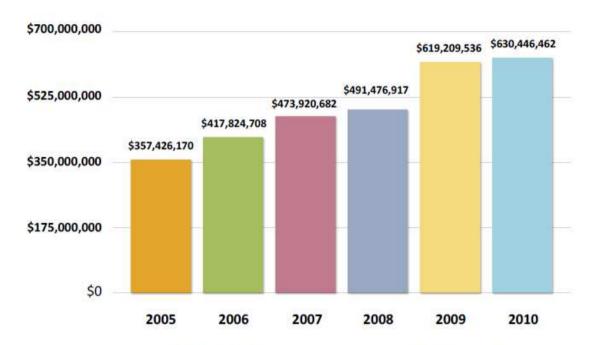
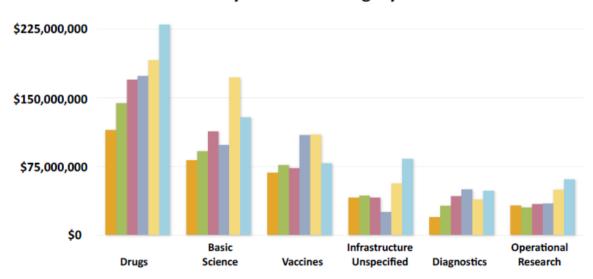



Figure 2: Proportion of tuberculosis cases detected by each method in culture-positive patients

Percentages are the maximum proportion of cases detected by every method. (A) Tuberculosis case detection. (B) Detection of rifampicin resistance. Time to detection was defined as time between date of sputum sample collection and date of positive result. MTB-Mycobacterium tuberculosis. RIF-rifampicin.


Boehme et., Lancet 2011

Total TB R&D Funding: 2005-2010

2010 TB R&D investments witnessed a 76% increase over 2005 levels but only 2% growth since 2009.

by Research Category: 2005-2010

