

តុផ្លាតសានល៍มหาวิทยาลัย Chulalongkorn University Pillar of the Kingdom

TB Vaccine Development ~In Anticipation of AEC~

Tanapat Palaga, PhD Department of Microbiology Faculty of Science Chulalongkorn University

BIOTEC: 02/04/13

Estimated TB Incidence in 2010

WHO Report 2010

| NATURE | VOL 493 | 3 JANUARY 2013

A chest X-ray from a patient with tuberculosis (TB) in Lira, Uganda. Uganda is one of 22 countries accounting for roughly 80% of new TB cases each year.

TB'S REVENCE The world is starting to win the war against tuberculosis,

The world is starting to win the war against tuberculosis but drug-resistant forms pose a new threat.

"WE MUST INVEST IN VACCINE RESEARCH IF OUR ULTIMATE GOAL IS TO BE ABLE TO PREVENT THE DISEASE."

TB Vaccines

- The Stop TB Partnership (WHO) announced the goal of eliminating tuberculosis by the year 2050 (one new TB case per million) (Geneva, WHO Press, 2006)
- Tuberculosis research makes remarkable progress in past 10-15 years
- Lacks of understanding of what constitutes a protective immunity in TB are major obstacles

Current Vaccine: BCG

- The one and only available TB vaccine since 1921
- Most widely administered vaccines worldwide
- Effective in protection against severe forms of childhood TB
- Fails to protect against adult pulmonary TB
- Has not reduced global burden of TB
- Can cause BCG-related disease in HIV⁺ newborns

Global Immunization 1980-2010, BCG coverage at birth global coverage at 90% in 2010

Source: WHO/UNICEF coverage estimates 2010 revision. July 2011; 193 WHO Member States. Date of slide: 2 August 2011

Home	Questionnaire	About Link	s Publication	Contact Us	
We	come to the W	orld Atlac of B	CG Policies and	Practicos	
Thi	is interactive we	bsite provide	detailed inform	nation on cu	rrent and past BCG
policies and practices for over 180 countries. The Atlas is designed to be a useful resource for clinicians, policymakers and researchers alike, providing information					
tha	it may be helpfu	I for better in	terpretation of	TB diagnosti	ics as well as design of
tha	it may be helpfu w TB vaccines.	l for better in	terpretation of	TB diagnosti	ics as well as design of
tha	it may be helpfu w TB vaccines. The ra PLoS I	l for better in tionale and m Medicine.	terpretation of ethodology for	TB diagnostic	described in a paper in
thanev	t may be helpfu w TB vaccines. The ra PLoS I Please courts	I for better in tionale and m dedicine. select a Cour a country to v	terpretation of ethodology for htry from the dr iew all available	TB diagnostic this Atlas is o op down box e information	cs as well as design of described in a paper in c, or use the map to n concerning that

Zwerling et al., PLoS Med (2010)

Country	Thailand
Region	East Asia & Pacific
TB Incidence (per 100 000 per year) * †	137
TB Incidence (Count) * †	93000
TB Prevalence (per 100 000 per year) ^{* ‡}	189
TB Prevalence (Count) ^{* ‡}	130000
Income group (World Bank)	Lower middle income
Current BCG vaccination?	Yes
BCG Recommendation Type	A
Which year was vaccination introduced?	1977
Year BCG stopped?	N/A
Timing of 1st BCG?	At birth
Multiple BCG?	No
Timing of BCG #2	N/A
Timing of BCG #3	N/A
Multiple BCG in the past?	Yes
Timing of old BCG #2	
Timing of old BCG #3	
Year booster BCG stopped	
BCG Strain	Tokyo, Thai Red Cross
Is TST done post BCG?	No
Year of BCG cooverage estimate	2003
BCG coverage (%)	99%
Year of changes to BCG schedule	1987 & 1991
	1987: changed strain from Danish to Tokyo (same manufacturer)

CG Recommendation Types

Туре	Description				
A	This country currently recommends BCG vaccination for everyone at a certain age. (Example: BCG at birth or for school-age children etc.)				
В	This country used to recommend BCG vaccination for everyone, but currently does not.				
с	BCG vaccination was never recommended for everyone in this country. (i.e.: never gave BCG or given only to high risk groups such as health care workers.)				
Data Availability					
Entry	Description				
NA	A This entry is not applicable to this country.				
(Blank)	This data was not available				

Vicious Cycle of TB

Kaufmann, Immunity (2010)

Necessity of New TB Vaccines

- Nearly 9 million new cases and 1.7 million deaths per year
- Vaccine that <u>prevent pulmonary TB</u> in all age groups is in need to significantly reduce disease incidence
- TB vaccine pipeline was empty in 1990s but now we have more than 12 novel vaccine candidates in human clinical trials

Immunology of TB and Vaccines

Ottenhoff and Kaufmann, PLoS Pathogens (2012)

Designing New TB Vaccines

- Lacks of reliable correlates of protection (biomarkers) and human challenge model → empirical testing of vaccine candidates
- Two basic types:

(1) Live vaccine to replace BCG: rBCG or attenuated *M. tuberculosis*

(2) Booster vaccine for BCG: subunit vaccines

Live Vaccine

- Replacement of the conventional BCG vaccine
 (1) live recombinant BCG (rBCG)
 - (2) live attenuated *M. tuberculosis* ($\Delta PhoP\Delta fad$ strain)
 - Should be:
- -safer or equivalent to BCG
- -more immunogenic
- -inducing long lasting protection and inducing protection against highly virulent strains (MDR/XDR TB or *Beijing* strains)

Subunit Vaccines

• Priming vaccines or booster vaccines in combination with BCG vaccine

(1) recombinant proteins with adjuvants

(2) non-replicating viral vectors

(3) DNA vaccines

Preclinical TB Vaccine Development

Walker et al., 2010 (Vaccine)

TB Vaccine Trials in Animal Models

Okada and Kita, 2010 (Human Vaccines)

Туре	Candidate	Description	Clinical Trial Status	
Recombinant BCG for pre-exposure prime vaccination	VPM 1002	rBCG-expressing listeriolysin and urease deletion	Phase IIa ongoing	
	rBCG30	rBCG-expressing Ag85B	Phase I completed/on hold	
	Aeras-422	rBCG-expressing perfringolysin and Ag85A, 85B, Rv3407	Phase I terminated due to side effects	
Viral-vector for pre-exposure booster vaccination	Oxford MVA85A/Aeras-485	Modified vaccinia Ankara-expressing Ag85A	Phase IIb ongoing	
	Crucell Ad35/Aeras-402	Replication-deficient adenovirus 35-expressing Ag85A, Ag85B, TB10.4	Phase IIb ongoing	
	AdAg85A	Replication-deficient adenovirus 5-expressing Ag85A	Phase I	
Fusion protein in adjuvant for pre-exposure booster vaccination	Hybrid 1+IC31	Fusion of Ag85B and ESAT-6 in adjuvant IC31	Phase I, soon entering Ila	
	Hybrid 56+IC31	Fusion of Ag85B, ESAT-6 and Rv2660c in adjuvant IC31	Phase I ongoing	
	Hybrid 1+CAF01	Fusion of Ag85B and ESAT-6 in adjuvant CAF01	Phase I ongoing	
	M72+AS01 or AS02	Fusion of Rv1196 and Rv0125 in adjuvant AS01 or ASO2	Phase IIa ongoing	
	Aeras-404: HyVac4+IC31	Fusion of Ag85B and TB10.4 in adjuvant IC31	Phase I	
Whole bacterial vaccine for therapeutic vaccination	RUTI	Detoxified M. tuberculosis in liposomes	Phase IIa ongoing	
	М. vaccae	Inactivated M. vaccae	Phase III completed	

 Table 1. Most advanced TB vaccine candidates in clinical trials.

Ottenhoff and Kaufmann, PLos Patho (2012)

Development Pipeline for New TB Vaccines (as of 2012)

Kaufmann, Trends Immunol (2012)

€@

Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial

Michele D Tameris*, Mark Hatherill*, Bernard S Landry, Thomas J Scriba, Margaret Ann Snowden, Stephen Lockhart, Jacqueline E Shea, J Bruce McClain, Gregory D Hussey, Willem A Hanekom, Hassan Mahomed†, Helen McShane†, and the MVA85A 020 Trial Study Team

- -Modified vaccinia Ankara virus-expressing Ag85A
- -the first new tuberculosis vaccine in 90 years
- -Developed as a heterologous prime boost for BCG
- -Improved BCG-induced protection in animals
- -Induced antigen-specific Th1 and Th17 in infants
- -Phase IIb: infants (4-6 m/o HIV- with BCG vaccination) Enrolled 2797 infants
- -Well tolerated and induced modest CMIR
- -Endpoints: incident of TB/Quantiferon TB Gold Conversion NO PROTECTIVE EFFICACY (up to 37 months)

VPM1002: (BCG *∆ureC::hly*)

- MPIIB/Vakzine Projekt Management GmbH/TBVI
- Genetically engineered to express listeriolysin from *L. monocytegenes* as a fusion protein with Ag85B under *hsp60* promoter
- Deletion of urease C to keep pH in phagosome to 5.5
- Better protection against

Beijing strains

Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial

Leander Grode^{a, 1}, Christian A. Ganoza^{b, 1}, Christiane Brohm^{a, 1}, January Weiner 3rd^b, Bernd Eisele^a, Stefan H.E. Kaufmann^{b,*}

^a Vakzine Projekt Management GmbH, Hannover, Germany
^b Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany

First patient for the clinical trial of "VPM1002."

-Total of 80 healthy male volunteers
-Varying doses: 5x10³-5x10⁵CFUs ID
-No AEs and well tolerated
-Induced IFNγ producing and multifunctional T cells and antibody
in BCG-naïve and BCG-immune settings

Currently in Clinical Phase 2a

Multi-state Subunit Vaccine for Postexposure Vaccine

medicine

Received 12 October 2010; accepted 7 December 2010; published online 23 January 2011; doi:10.1038/nm.2285

A multistage tuberculosis vaccine that confers efficient protection before and after exposure

Claus Aagaard^{1,6}, Truc Hoang^{1,6}, Jes Dietrich¹, Pere-Joan Cardona², Angelo Izzo³, Gregory Dolganov⁴, Gary K Schoolnik⁴, Joseph P Cassidy⁵, Rolf Billeskov¹ & Peter Andersen¹

Early antigens (Ag85B and ESAT-6) } Latency-associated protein (Rv2660c)

. CAF01 Adjuvant

synthetic two-component liposomic adjuvant comprising the quaternary ammonium dimethyldioctadecyl-ammonium (DDA) and the immune modulator trehalose 6,6'-dibehenate (TDB)

-Better containment of late-stage infection -Control reactivation and lower bacterial load

A recombinant *Mycobacterium smegmatis* induces potent bactericidal immunity against *Mycobacterium tuberculosis*

Kari A Sweeney^{1,2}, Dee N Dao^{1,2,6}, Michael F Goldberg^{2,6}, Tsungda Hsu^{1,2}, Manjunatha M Venkataswamy², Marcela Henao-Tamayo³, Diane Ordway³, Rani S Sellers⁴, Paras Jain^{1,2}, Bing Chen^{1,2}, Mei Chen^{1,2}, John Kim^{1,2}, Regy Lukose^{1,2}, John Chan^{2,5}, Ian M Orme³, Steven A Porcelli^{2,5} & William R Jacobs Jr^{1,2,5}

NATURE MEDICINE VOLUME 17 | NUMBER 10 | OCTOBER 2011

- Deletion of Esx-3 from *M. smegmatis*
- Introducing *M. tuberculosis* Esx-3 into this mutant
- Strong bactericidal immunity
- Sterile eradication

Obstacles in Developing New TB Vaccines

- Lack of knowledge on what constitutes a protective host immune response
- Lack of good animal models
- Lack of surrogate endpoint markers (correlates of protection)
- Lack of funding (everywhere and especially in Thailand)

Research in New TB Vaccines in Thailand

- Almost none exists
- Some grant application attempt was made to government funding agency but ended unsuccessfully
- Recombinant BCG vaccine/DNA vaccine/Subunit vaccine
- Discovery step (pre-clinical vaccine development)

Vaccine 31 (2013) 784-790

Enhancement of immune response to a DNA vaccine against *Mycobacterium tuberculosis* Ag85B by incorporation of an autophagy inducing system

Jomkhwan Meerak^{a,b}, Supason P. Wanichwecharungruang^c, Tanapat Palaga^{a,*}

^a Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand

^b Division of Microbiology, Department of Biology, Faculty of Science, Chiang Mai University, Huaykaew Road, Chiangmai 50200, Thailand

^c Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand

Do We Need to Invest in New TB Vaccines?

- There is no guarantee that the current vaccine candidates will go all the way
- Need to keep the pipeline full of new candidates
- Different geographic and ethnic settings
- Different *M. tuberculosis* lineages
- No active TB vaccine research in ASEAN

DNA Vaccine

Table 1. The development of Novel vaccines for *M. tuberculosis* using animal model

Vaccine	Mouse	Guinea pig	Monkey	SCID-PBL/hu	Human
	Prophylactic Effect 10,000-fold than BCG	effective	effective		plan (phase <mark>I, I</mark> I)
HVJ-Envelope/HSP65 DNA+IL-12 DNA	Therapeutic Effect	plan	effective	effective	
	Therapeutic Effect against MDR-TB XDR-TB	plan	plan plan		
HVJ-liposome/HSP65 DNA+IL-12 DNA	prophylactic Effect 100-fold effective than BCG	effective	effective (100% survival)		
recombinant 15 K granulysin	Therapeutic Effect		plan		
15 K granulysin DNA	Therapeutic Effect		plan		

HVJ-Envelope/HSP65 DNA+IL-12 DNA vaccine was evaluated by using mouse, guinea pig, monkey and SCID-PBL/hu model. Therapeutic efficacy as well as prophylactic efficacy was shown in this vaccine. HVJ-liposome/HSP65 DNA+IL-12 DNA vaccine and granulysin vaccine were also evaluated by using these models.

Okada et al., Human Vaccine (2011)

Kita et al., Human Vaccines (2011)

DNA Vaccine to Enhance Immunogenicity against Ag85B

Priming via subcutaneous and boost with nasal route

Meerak and Palaga, 2012

Challenges for Initiating New TB Vaccine (Globally and Locally)

- Preclinical evaluation of vaccine candidates (mice, guinea pigs, NHP): Facility for animal studies
- Predictive parameters (biomarkers) for vaccine efficacy
- Financing of preclinical and clinical development
- (Re)awakening of TB vaccine research
- Human resources: training and incentives (local)

Funding, political and multinational support with increase public awareness of the needs for new TB vaccine

Tuberculosis Vaccine Initiative

News & Agenda

RH	0	97	E.	
LL J		20		

News archive 2012
News archive 2011
News archive 2010
News archive 2009
News archive 2008
Events
Subcribe to our newslet

TBVI » News & Agenda » News » > EU parliament votes for resolution to support TBVI

EU parliament votes for resolution to support TBVI

03-02-<mark>11</mark>

Europe has to stay on the forefront in the development of new tuberculosis vaccines. A large majority (578 against 9) MEP's supported a resolution for the European Commission, the Council and WHO to stress the importance of this issue. TBVI takes up a key position in the text of the resolution.

Next Generation of Vaccine Candidates

- Most current vaccine candidates are administered pre-exposed to prevent active TB
- The goal is not to achieve sterile clearance
- Vaccines that can result in sterile eradication and therapeutic vaccines (post exposure) are the next generation candidates (with the rise in TB/HIV co-infection)

New Antigens; Therapeutic Vaccines; Environment of Host

Table 2. Total R&D Funding by Disease

Disease	Amount (US\$)	% of Total Funding
HIV/AIDS	1,083,018,193	42.30
Malaria	468,449,438	18.30
Tuberculosis	410,428,697	16.03
Kinetoplastids	125,122,839	4.89
Diarrhoeal diseases	113,889,118	4.45
Dengue	82,013,895	3.20

Moran et al., PLoS Medicine (2009)