

"Upgrading of the conventional FAME into H-FAME"

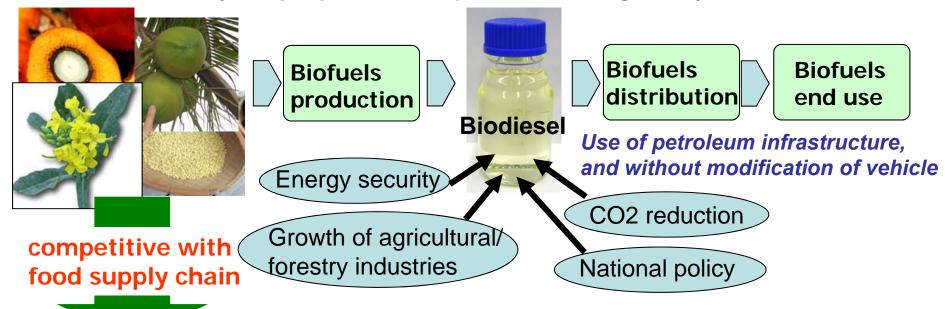
In

Thailand-Japan collaboration on "Innovation on production and automotive utilization of biofuels from non-food biomass" in Science and Technology Research Partnership for Sustainable Development (SATREPS, JST-JICA Joint Collaboration Program)

Dr. Yuji YOSHIMURA

Leader/Research Director of Project, Prime Senior Researcher, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Dr. Paritud BHANDHUBANYONG

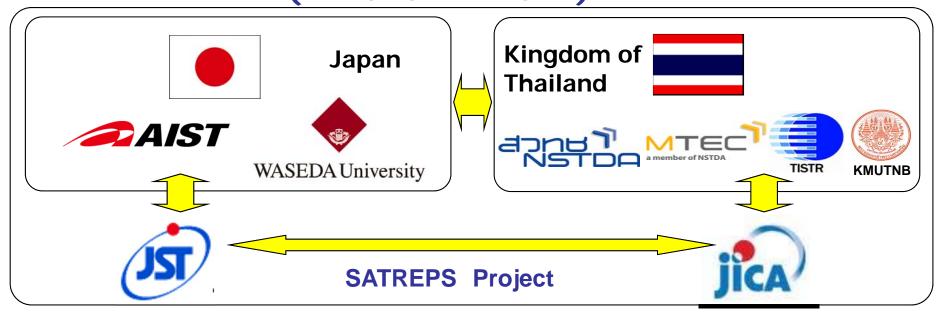

Project Director of Project, Thailand

NAC 2013, April 1, 2013, Bangkok

Demands for gradual shift to non-food biomass

Food biomass (well prepared feed production/logistics)

Non-food biomass


- ◆ Limited production and supply chain
- ◆ Need to develop the new/modified biomass conversion technologies
- ◆ Limited quality assurance to meet with standards
- ◆ Limited information on its vehicle use

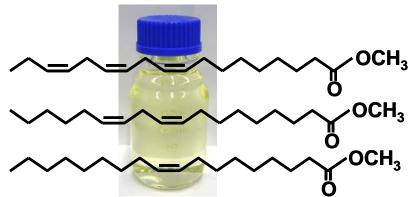
Drop-in oil

Innovation on production and automotive **AIST** utilization of biofuels from non-food biomass (FY2010 - FY2014)

- National Institute of Advanced Industrial Science and Technology (AIST)
- Waseda University
- Japan Science and Technology Agency (JST)
- Japan International Cooperation Agency (JICA)
- National Science and Technology Development Agency (NSTDA)
- Thailand Institute of Science and Technological Research (TISTR)
- King Mongkut's University of Technology NB

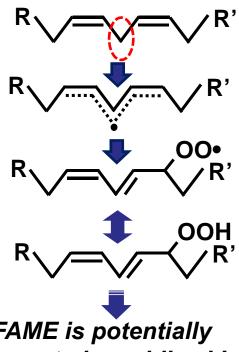
Outline of JST-JICA project

To develop the novel non-food biomass conversion technology for producing drop-in oils that meet with the automotive fuel **◆**EAS-ERIA BDF standards. standard, (EEBS):2008 Diversification of WWFC Guideline BDF feedstock: Palm oil. quality Waste cooking oil, etc. Jatropha fruit st gen **FAME** Quality productionassurance catalytic upgrading H-FAME Fast pyrolysis-Quality catalytic (Toxic non-food upgrading assurance biomass) Gasoline, etc. ◆ New Biomass to Liquids Diversification of feedstocks: EFB, Forest residues, Algae, etc. ♦ On-road durability tests LCA, Capacity building and Technology transfer Market use of new fuels



Contents:

- 1. Importance of FAME oxidation stability
- 2. How to improve the FAME fuel quality
- 3. How to produce the partially hydrogenated FAME (H-FAME), i.e., a chemically upgraded FAME
- 4. Materials compatibility and engine performances of H-FAME
- 5. Feasibility study of H-FAME


1. Importance of FAME oxidation stability

Fatty acid methyl ester (FAME)

- World wide use as diesel alternative
- Blending use, B5,B7,etc.
- Standards for B100, B5, B7, etc.
- Worry on impurities, its oxidation stability and high-concentration use of FAME.

FAME is potentially easy to be oxidized!

Organic acids and sludge formed after oxidative degradation in the use of inferior FAME and in the inappropriate anti-oxidant addition

harmful effects

Injector (source : JAMA)

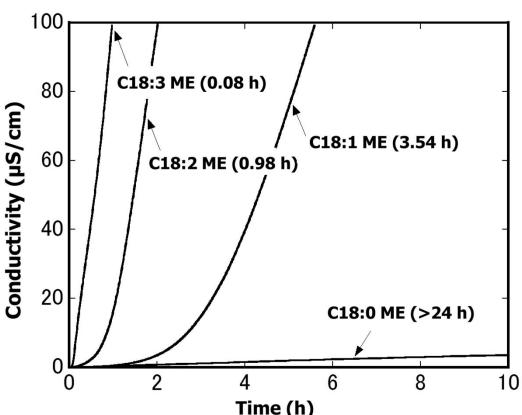
Fuel tank (source: Fuel Policy Subcommittee)

Oxidation stability is an important item for FAME quality assurance

1-1. Oxidation stability of FAME components

Main components of FAME:

Tri-unsaturated FAME (C18:3)


Di-unsaturated FAME (C18:2)

Mono-unsaturated FAME (C18:1, C16:1)

Saturated FAME (C18:0, C16:0, C14:0, C12:0)

- Ease of oxidation and formation of acids after oxidative degradation: C18:3>C18:2>C18:1>>C18:0
- ♦ Sludge formation: C18:3

Reported oxidation rates for FAME: 98 (C18:3)>41(C18:2)>1(C18:1)

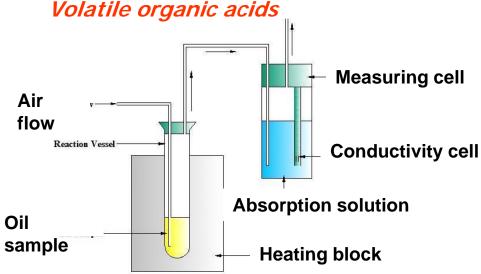
"The biodiesel handbook", AOCS press, 2005

◆ FAME oxidation stability will depend on feedstock, i.e., dependence of quality assurance on feedstock.

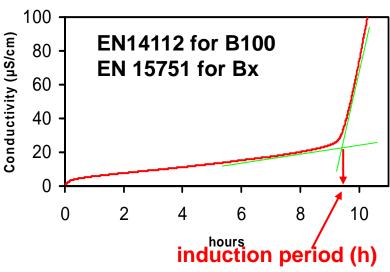
Oxidation stability of various FAME measured by Rancimat

Y.Abe, et. Al., J.Jpn.Petrol.Inst., 52(5), 359-360(2009)

How to measure the oxidation stability of FAME

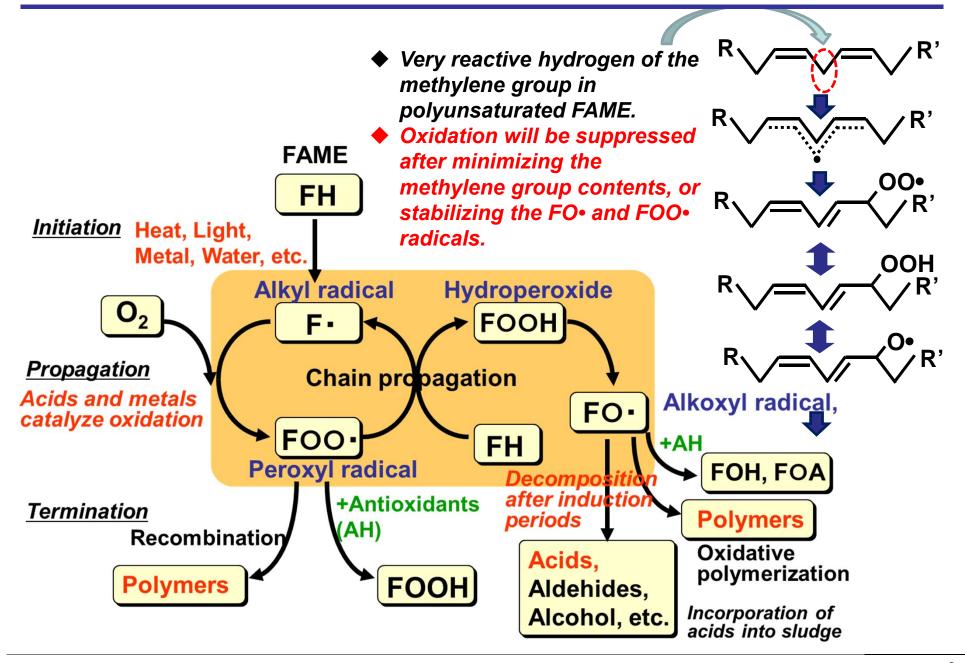


Rancimat apparatus



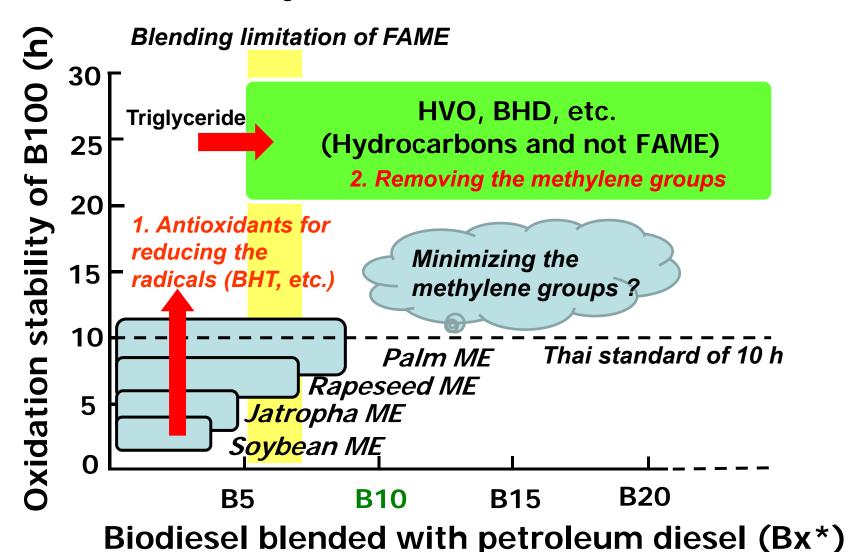
PetroOXY apparatus

◆ Induction time when the pure oxygen pressure is reduced by 10% is an index of oxidation stability (e.g., >65 min)

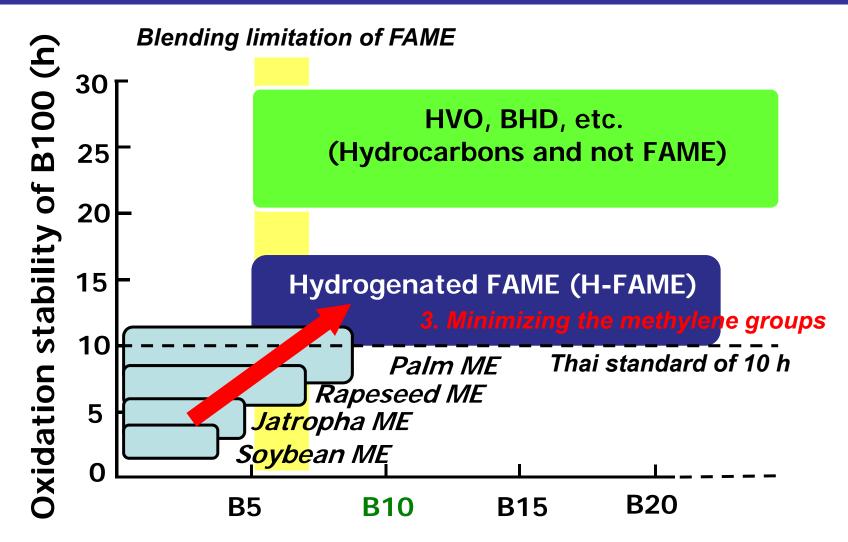

Temperature 110 °C, Air flow rate 10 L/h

Induction time is an index of oxidation stability (e.g., >10 h)

1-2. Possible oxidation mechanism of FAME



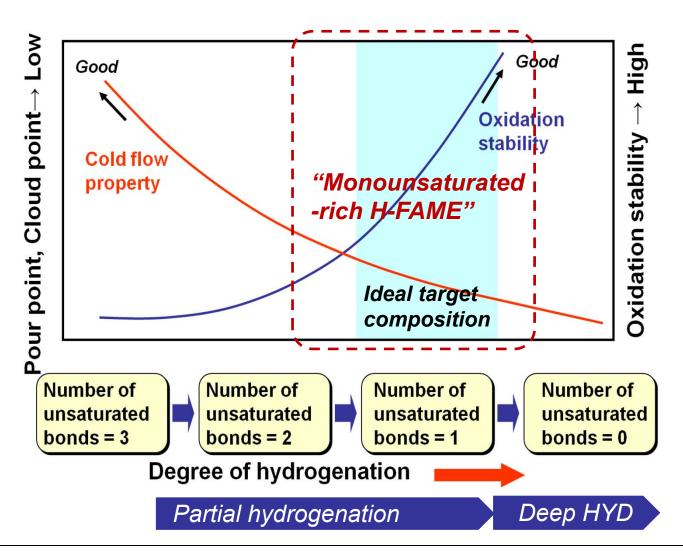
2. How to improve the FAME fuel quality



2-1. Two main ways to increase the oxidation stability

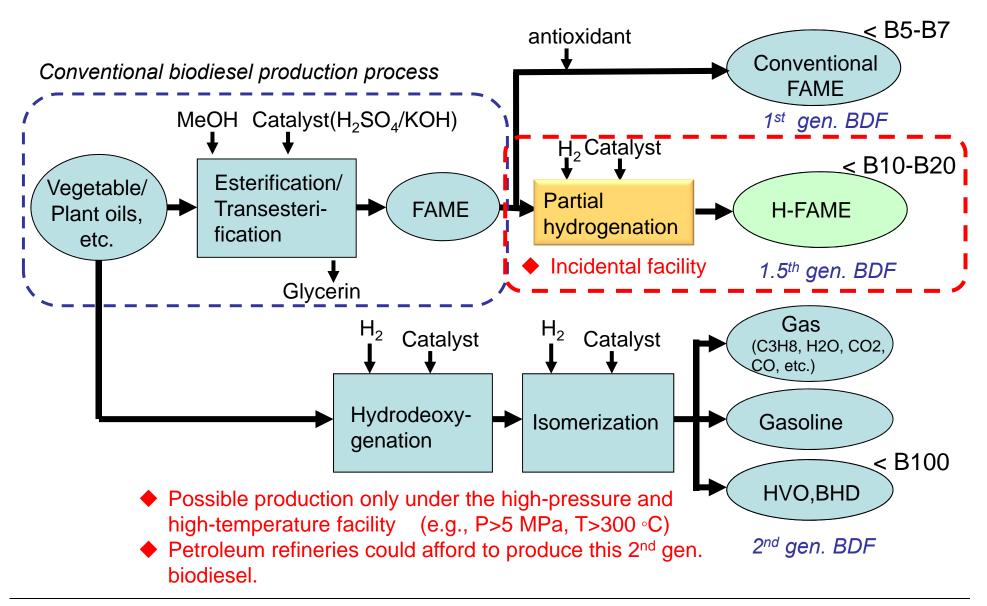
*X vol% of biodiesel and (100-X) vol% of petroleum diesel

Hydrogenation way to increase the oxidation stability AIST



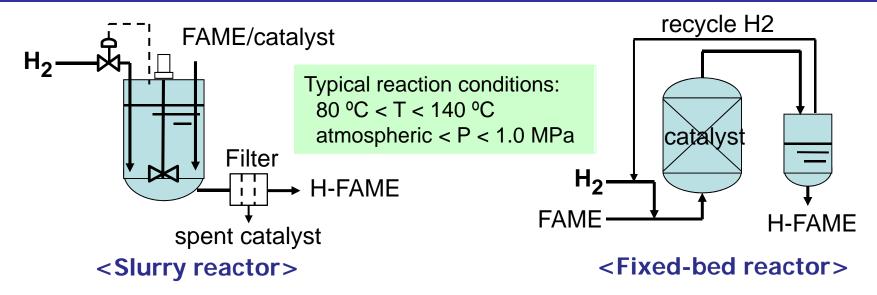
Biodiesel blended with petroleum diesel (Bx*)

*X vol% of biodiesel and (100-X) vol% of petroleum diesel

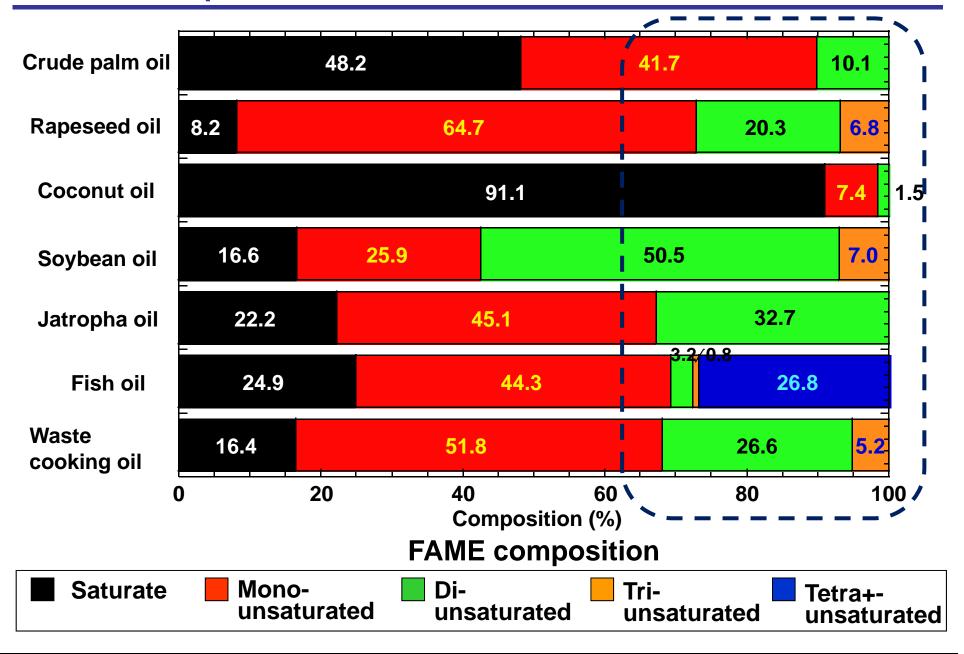


H-FAME: Partially hydrogenated FAME which contains maximal amounts of the monounsaturated FAME after decreasing the amounts of the polyunsaturated FAME with minimal increases in the saturated FAME amounts.

3. How to produce the H-FAME



3-1. Comparison between the H-FAME and HVO (BHD) AIST


	H-FAME (1.5 th gen. FAME)	HVO (2 nd gen. biofuel)		
Reaction		^=^=^=^ ⁰ \		
	V OCH₃			
	Mono/Polyunsaturated FAME	Oil (Triglyceride) Ö		
	Monounsaturated-rich FAME ^O	Hydrocarbons		
Hydrogen consumption	Partial hydrogenation : 3H ₂	Hydrogenolysis/hydrogenation: 18H ₂ Decarboxylation: 9H ₂		
Oxidation Stability	Relatively high	High		
Reaction	Low pressure (atmospheric~0.5MPa)	High pressure (>5MPa) High temperature (>300°C)		
Conditions	Low temperature (80~120°C)			
Catalysts	Ni catalysts, Noble metal catalysts, etc.	Water (steam)-tolerant NiMo catalysts, CoMo catalysts, etc.		
C. others	GIO.			
Further processing	None	Isomerization for conditioning cold flow property and cetane number		
Location of	Local Community~ Refinery	Petroleum refinery (Neat ~ Coprocessing)		
processing facility	(small ~ large plants)			

3-2. Catalysts and process for partial hydrogenation AIST

- Slurry reactors with the powder catalysts and fixed-bed reactors with the grain catalysts could be used.
- Mass transfer limitations are significant for the grain catalysts, e.g., egg-shell metal loadings over the grain support for minimizing them.
- Reaction conditions will be milder for Pd catalysts than Ni catalysts, i.e., lower temperature and H2 pressure, etc. Ni catalysts have been commonly used in the fats and VO hydrogenation.
- Reaction conditions will affect on the hydrogenation performances (lots of information on VO hydrogenation). Tans-isomers are also not preferable in FAME upgrading due to the higher pour point:
 - For increasing the monoene selectivity: increases in temperature and cat. amount; For increasing the *cis*-isomers: increases in H2 pressure and mixing of 3-phases.

3-3. Possible production of H-FAM from all of the feedsto AIST

3-4. Advantages of H-FAME

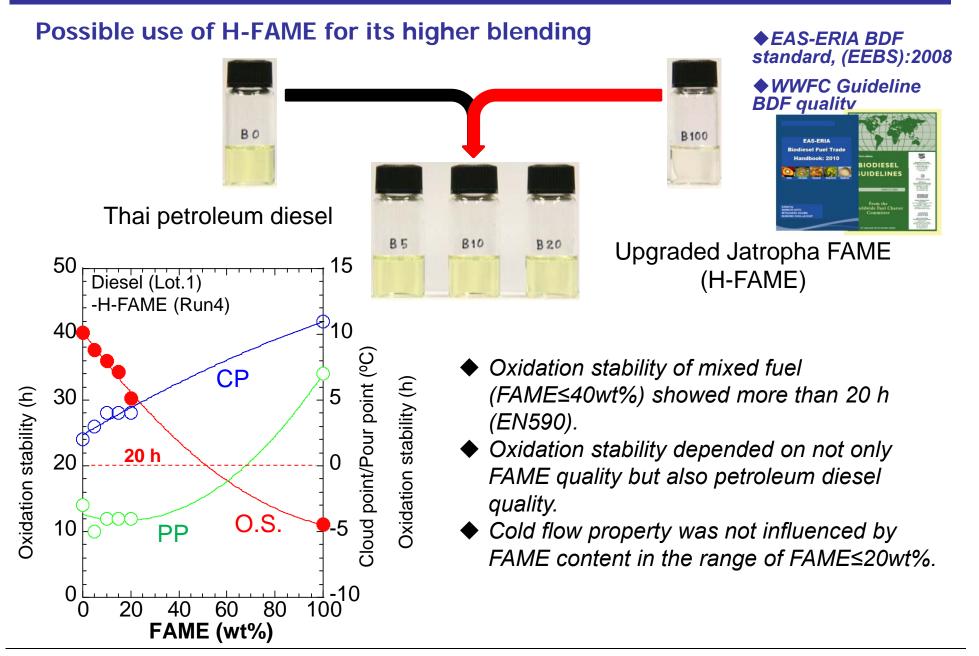
Advantages of H-FAME at low pressure hydrogenation

- No need to use the high-pressure facilities (P<0.5MPa)
- Low temperature hydrogenation conditions (T<100-120 °C)
- Intrinsically stable BDF for oxidation; minimizing the sludge formation via. thermal degradation, safely use in long-term storage and transportation, etc.
- Decreasing the phorbol ester contents
- Increase in Cetane number, etc.
- Possible high concentration use up to 20-30 vol%, etc.

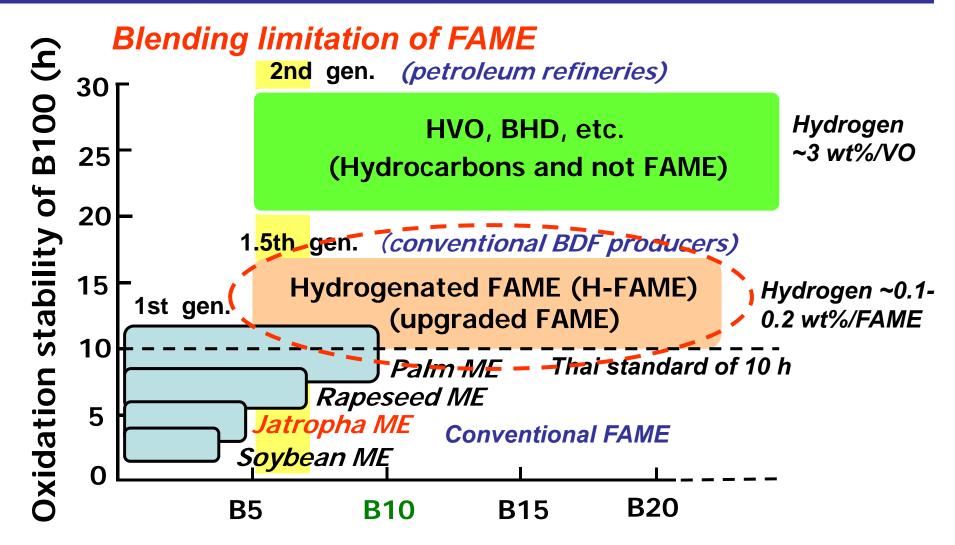
Disadvantages of hydrogenation upgrading

- Need of on-site hydrogenation production unit, or H2 delivery systems, but <u>upgrading at the central refinery will overcome this</u> <u>point</u>.
- Costly than the conventional antioxidant addition, but more advantages

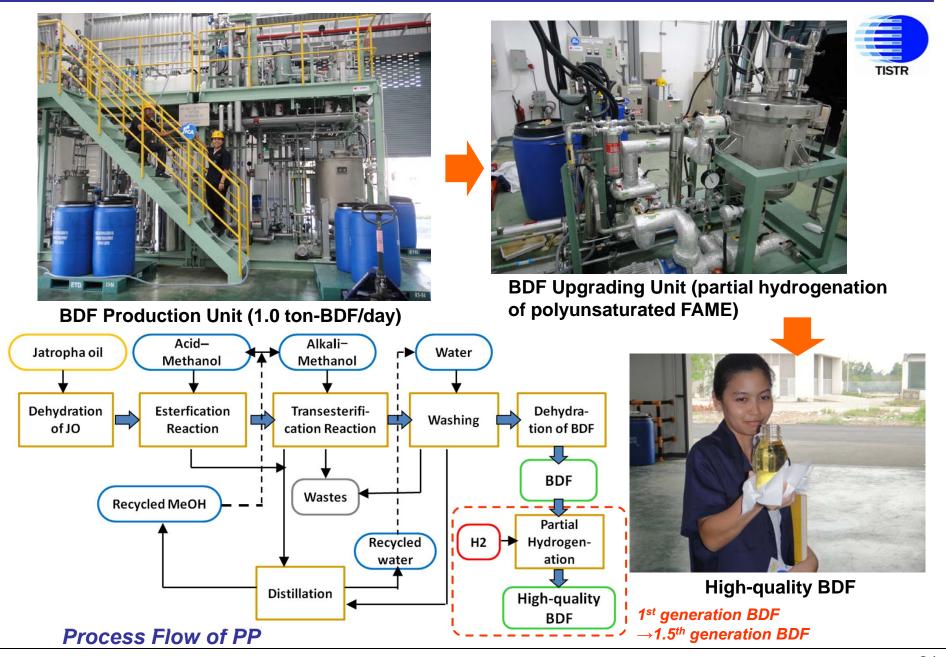
Oxidation stability of B100 (neat BDF)


FAME	BH'		Induction tin via. Rancima (h)	
Rapeseed FAME		0	3.8	OH
-	•	100	4.5	$(H_3C)_3C$ $C(CH_3)_3$
	1,0	000	8.0	
	5,0	000	14.9	
	10,0	000	18.5	ı
H-FAME* from Rapesee	d oil	0	17.8	<i>BHT</i>

^{*} T=80 °C, PH2=0.5 MPa, 1.5 h


- ◆Partial hydrogenation of B100 will be quite effective to increase the oxidation stability, i.e., equivalent to ca. 1 wt% BHT addition.
- ◆ For preparing B7 in EU, 1,000 ppm of BHT will be added into B100.

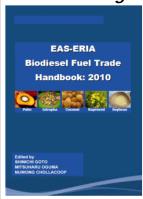
Possible use of H-FAME for higher blending



Biodiesel blended with petroleum diesel (Bx*)

*X vol% of biodiesel and (100-X) vol% of petroleum diesel

3-6. High-Quality BDF Production PP (1.0 ton/day) @TIST AIST



Quality of BDF produced by the pilot plant in TISTR AIST

Items	Units	EU	Japan	EAS-ERIA BDF Standard	WWFC	TISR's PP
		EN14214:2003	JIS K2390:2008	(EEBS):2008	March, 2009	Product BDF
Ester content	mass%	96.5 min.	96.5 min.	96.5 min.	96.5 min.	99.7
Density	kg/m3	860-900	860-900	860-900	Report	876
Viscosity	mm2/s	3.50-5.00	3.50-5.00	2.00-5.00	2.0-5.0	5.02
Flashpoint	deg. C	120 min.	120 min.	100 min.	100 min.	186
Sulfur content	mass%	0.0010 max.	0.0010 max.	0.0010 max.	0.0010 max.	0.00025
Distillation, T90	deg. C	-	-	-	-	-
Carbon residue (100%) or	mass%	-	-	0.05 max.	0.05 max.	
Carbon residue (10%)	111055 /0	0.30 max.	0.3 max.	0.3 max.	-	0.14
Cetane number		51.0 min.	51.0 min.	51.0 min.	51.0 min.	57
Sulfated ash	mass%	0.02 max.	0.02 max.	0.02 max.	0.005 max.	<0.001
Ash content	mass%	-	-	-	0.001 max.	-
Water content	mg/kg	500 max.	500 max.	500 max.	500 max.	385
Water and sediment	vol%	-	-	-	0.05 max.	-
Total contamination	mg/kg	24 max.	24 max.	Demonds for high	welity BDE	8.3
Copper corrosion		Class-1	Class-1	Demands for high of	uality DDF	Class-1a
Corrosion: Ferrous		-	•	•	light rusting. Max	-
Acid value	mgKOH/g	0.50 max.	0.50 max.	0.50 max.	0.5 max.	0.16
Oxidation stability	hrs.	6.0 min.	(**)	10.0 min. (****)	10 min.	15.1
lodine value		120 max.	120 max.	Reported (***)	130 max.	70.5
Methyl Linolenate	mass%	12.0 max.	12.0 max.	12.0 max.	12.0 max.	0
Polyunsaturated FAME	mass%	1 max.	N.D.	N.D. (***)	1 max.	N.D.
(more than 4 double bonds)						
Methanol content	mass%	0.20 max.	0.20 max.	0.20 max.	0.20 max.	<0.01
Monoglyceride content	mass%	0.80 max.	0.80 max.	0.80 max.	0.80 max.	0.54
Diglyceride content	mass%	0.20 max.	0.20 max.	0.20 max.	0.20 max.	0.20
Triglyceride content	mass%	0.20 max.	0.20 max.	0.20 max.	0.20 max.	0.06
Free glycerol content	mass%	0.02 max.	0.02 max.	0.02 max.	0.02 max.	0
Total glycerol content	mass%	0.25 max.	0.25 max.	0.25 max.	0.25 max.	0.17
Na+K	mg/kg	5.0 max.	5.0 max.	5.0 max.	5 max.	<3
Ca+Mg	mg/kg	5.0 max.	5.0 max.	5.0 max.	5 max.	<2
Phosphorous content	mg/kg	10.0 max.	10.0 max.	10.0 max.	4 max.	<1
Trace metals		-	-	-	no addition	-

Mid-term target

♦EAS-ERIA BDF standard, (EEBS):2008

Final target

♦ WWFC **Guideline BDF** quality

EAS: East Asia Summit: ERIA: Economic Research Institute for ASEAN and East Asia; WWFC: World Wide Fuel Charter

^(*) Equivalent to diesel oil

^(***) Need data check and further discussion

^(**) Meet diesel oil specification

^(****) Need more data & discussion from 6 to 10 hrs.

4. Materials compatibility and engine performances of H-FAME

Test temp.:

Room temp. to 90°C

Rubber Hose

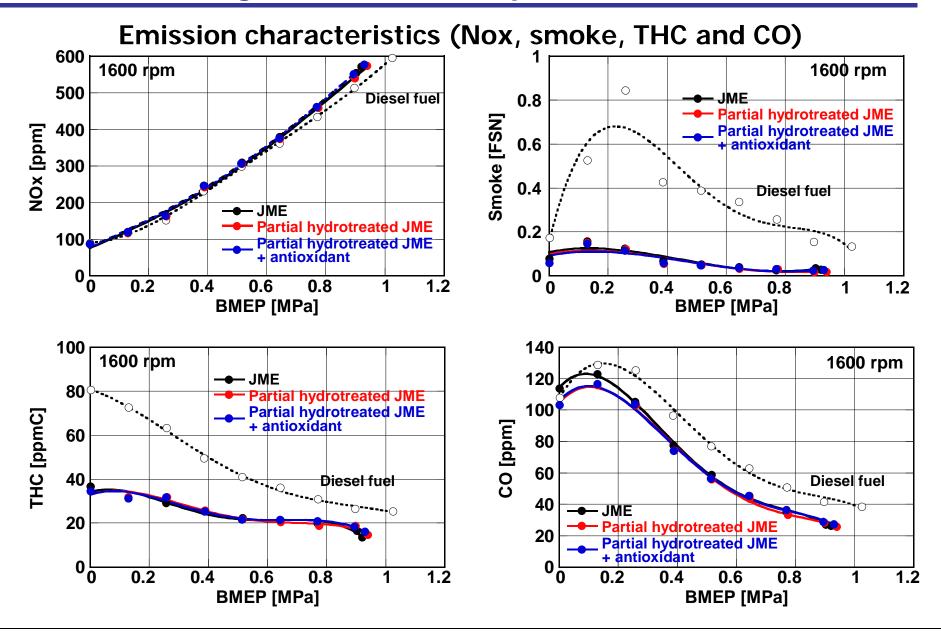
Copper Plates

Material Immersion Test

- <Tested Fuels>
- Diesel Fuel
- •FAME
- •FAME + Additive (JME+A)
- •H-FAME(HJME)
- •H-FAME+ Additive (HJME+A)
- <Tested Materials>
- •Rubber: Fuel hose (9Z01) installed between a fuel tank and a fuel filter
- Metal: Copper (C1100) used in a

diesel injection pump

Engine Dynamometer (AIST)


Test fuels for engine performance

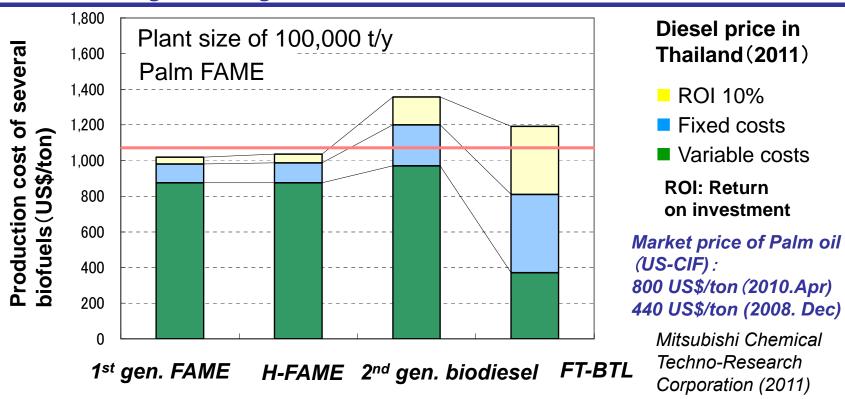
- Conventional diesel fuel
- FAME (JME): Oxidation stability = 1hr.
- H-FAME: "
- H-FAME + antioxidant " > 30hr.

= 12hr.


Evaluation of engine and emission performances of H-FAME

4-1. On-road durability test by using B10

B10: 10 vol% of Jatropha H-FAME blended with 90 vol% of Thai petro-diesel



MOU ceremony on "Innovation on New Non-Food Biodiesel Project" (2012.7.30) @Bangkok

5. Feasibility study of H-FAME

- ♦Small cost up for 1.5th gen. FAME compared with 1st gen. FAME, but much less than 2nd generation biodiesel, even after newly installation of an on-site H2 production plant.
- ♦High proportion of variable costs for 1st, 1.5th and 2nd generation FAME production, i.e., fixed costs share about 70 % of the total production cost for 1st and 1.5th gen. FAME, so reduction of raw materials costs will be the key to increase its feasibility.
- ♦Lots of issues for Jatropha to be solved: improvement of tissue culture and species, improvements of cultivation techniques and oil extraction techniques, labor-intensive cultivation and harvesting, utilization of residues after oil extraction etc.

Acknowledgements

H-FAME team: Dr. Makoto TOBA, Dr. Takehisa MOCHIZUKI, Dr. Shi-Yuen CHEN, Ms. Yhoko ABE, Dr. Akio NISHIJIMA and Dr. Hideo SAMURA.

We deeply appreciate JST and JICA for their financial supports.

We also deeply thank all of the research participants of NSTDA/MTEC, TISTR. KMUTNB, WASEDA U. and AIST for their contributions to this Project.

Thank you for your kind attention