

อาหารยุคใหม่: อร่อยดีและมีประโยชน์

W. Pongjaruvat¹, A. Fuongfuchat¹, P. Methacanon¹, N. Seetapan¹, C. Gamonpilas^{1*} and A. Klaikherd²

¹National Metal and Materials Technology Center (MTEC), Thailand ²Siam Modified Starch Co., Ltd., Thailand

Present at NAC 2013: 1st April 2013

Health-Related Food Claims

➤ Products survey from 20,000 new products introduced in 2011

Source: Mintel GNPD, February 2012

The world is too fat. Too bad

WHEN the world was a simpler place, the rich were fat, the poor were thin, and right-thinking people worried about how to feed the hungry. Now, in much of the world, the rich are thin, the poor are fat, and right-thinking people are worrying about obesity.

Global Obesity Trends

Source: World Health Organization (WHO)

million people will be obese!!

Deep Fried Foods

- > Frying is the process of cooking and drying through contact with hot oil which involves simultaneous heat and mass transfer.
- ➤ Battering and breading are flour-water mixture and traditionally coated on foods e.g.
- meats and vegetables to enhance appearance, texture, flavour, colour and yield.
- ➤ High fat content in fried product leads to health concern e.g. obesity, heart disease.
- ➤ Many types of hydrocolloids e.g. cellulose ethers, xanthan and pectin successfully reduce oil content in fried food.
- Modified starch also has a potential as a component in batter ingredient.

Mechanisms of Deep Frying

Period 1: initial heating

No evaporation

10 s

Heat transfer: convection

Period 2: surface boiling

Water vaporization

20 -60 s

Heat transfer: forced

convection

Period 3: falling rate

Moisture lost

60 - 400 s

Heat transfer: forced

convection

Gelatinization/cooking

Period 4: bubble end point

cessation of moisture loss

reduction in heat transfer Oil absorption

Heat and vapor flow

Bulk flow

Convective heat flux

Steam flow (bubbles)

- Central region (mainly liquid),
- intermediate region (vaporization front)
 - crust region (hygroscopic domain)

Capillary liquid water transport

Mechanisms of Oil Absorption

Figure 11.2: Diagram showing the three locations of oil in the crust of a fried potato piece according to Bouchon et al. (2003) (used by permission of the Journal of Food Science, Institute of Food Technologists).

Proposed Mechanism:

- Water replacement
- Cooling-phase effect
- Surfactant theory of frying

Mechanism I: Water Replacement

Fig. 5. Oil content vs. moisture loss in French fries during frying at 155°C (Ziaiifar et al., paper in preparation).

- Escape of moisture and oil uptake ~ square root of frying time
- ➤ Water escape → void/pore → oil entering
- Most important for battered and starchy products (large voids/ pores)

Mechanism II: Cooling-Phase Effect

FIGURE 2.17 Physical interpretation of oil uptake during cooling. Advances in Deep-Fat Frying of Foods, *edited by Serpil Sahin and Servet Gülüm Sumnu* (2009)

porous crust ~ capillaries

Frying stage: P(steam) > P(surface) = 100 kPa → no oil enters the pores

Cooling stage: P (wet core) = 60 - 90 kPa + water condensation and

P(surface) = 100 kPa → capillary force + vacuum effect

→ oil enters the pores

Mechanism III: Surfactant Theory of Frying

Mainly observed in the process with long frying time

Figure 2.3 Interfacial tension between oil, water and food solid. (Source: Adamson, 1990. Physical Chemistry of Surfaces).

Oil degradation kinetics.

Surface active agent: mono/diglycerides

Surface tension between oil and crust **J**

- → wetting of oil on food surface
- → contact of oil and food surface 1
- → excessive oil absorption

Factors Affecting Oil Uptake

Figure 8: Important factors involved in the frying operation affecting oil uptake.

Reduction of Oil Uptake Using Hydrocolloids

Conceptual diagram illustrating the effect of edible films on moisture and fat transfer during deep-fat frying

Scope of Research

- ➤ To study fundamental properties, including physical and rheological properties of the selected modified starches that can be used as batter ingredients for fried chicken products
- ➤ To investigate characterstics and oil contents of fried chicken products that are prepared using various batter formulations.

Materials

■ Modified starches

- Crosslinked tapioca starch (Kreation MB)
- Crosslinked tapioca starch (Kreation BK)
- Acetated high amylose corn starch (HAC)
- Oxidised tapioca starch (Batter225)

Starch	WAI	WSI (%)
Wheat	2.25 ± 0.02	7.24 ± 0.17
Kreation MB	1.82 ± 0.05	0.22 ± 0.05
Kreation BK	1.84 ± 0.02	0.29 ± 0.18
HAC	2.27 ± 0.06	0.73 ± 0.05
Batter225	1.68 ± 0.04	1.05 ± 0.11

WAI: water absorption index

WSI: water solubility index

Materials, Cont

■ Batter formulation and preparation

Batter formulations

Ingredients	Control	Modified starch
Wheat flour (%)	80	60
Modified starch (%)	-	20
Corn flour (%)	10	10
Leavening (%)	2	2
Spices (%)	3	3
Milk powder (%)	2	2
Sugar (%)	2	2
Salt (%)	1	1
Powder : water ratio	1: 1.3	

Batter preparation

All dry mixed ingredients

Add cold water (10-15°C)

Stir for 20 min

Refrigerate batter at 3°C for 1 hr

Experimental

Measurement of water retention capacity (WRC)

Batter (30 g) in 50-ml centrifuge tube

Centrifuge at 2500 rpm for 10 min at 15°C

Remove and weigh supernatant

WRC (%) =
$$\left[1 - \frac{\text{weight of supernatant (g)}}{\text{weight of batter (g)}}\right] \times 100$$

■ Rheological properties

- Steady shear tests between 0.01-100 1/s at 15°C using a parallel plate of 55 mm diameter
- Flow curves between shear rates of 1-10 1/s fitted with Herschel-Bulkley model

to obtain the consistency (K) and flow behaviour (n) indices

Experimental, Cont

Measurements of batter pick-up and cooked yield

- > Batter pick-up relates to how much batter adheres to food substrate before frying.
- Cooked yield relates to the product yield after frying.

Pick up (%) = (<u>battered chicken-chicken</u>) × 100 battered chicken

Cooked yield (%) = cooked breaded chicken × 100

raw chicken

Experimental, Cont

☐ Determination of oil content using DSC technique

> A rapid technique to monitor phase change of lipid crystallisation in fried products

Crust of fried chicken

Cut into small pieces

Load into aluminium crucibles (~40mg)

Measure the enthalpy of oil crystallisation (ΔH) using DSC (25 - (-60°C))

Oil content (%) =
$$\frac{\Delta H_{sample}}{\Delta H_{oil}} \times 100$$

Frying Procedure

Skinless-boneless chicken breast (30x50x10 mm, ~15 g)

Predust

Dip in batter refrigerated at 3°C

Drain for about 10 sec

Breading

Shake to provide crusty texture

Fry with palm oil at 180°C for 5 min

Cool down for 5 min before testing

Water Retention Capacity

Batter formulation	WRC (%)
Control	77.78 ± 0.00 ^a
20% Kreation MB	72.15 ± 0.18 ^d
20% Kreation BK	71.21 ± 0.03 ^e
20% HAC	75.50 ± 0.26 ^b
20% Batter225	72.94 ± 0.20°

> The batter containing Kreation BK had the lowest WRC.

[➤] The substitution of 20% modified starch into the batter formulation decreased the WRC of the batters.

Rheological Properties

Batter formulation	K (Pas ⁿ)	n
Control	3.54±0.03ª	0.59±0.00°
20% Kreation MB	1.05±0.03 ^d	0.64±0.02 ^b
20% Kreation BK	1.31±0.02 ^b	0.69±0.00ª
20% HAC	1.21±0.00°	0.63±0.01 b
20% Batter225	1.00±0.03 ^d	0.64±0.00 b

- > All batter formulations showed shear thinning behaviour.
- The substitution of 20% modified starch decreased viscosity/consistency of the batters, resulting from the dilution of wheat flour proteins.

Pick-up and Cooked Yield

➤ Batter pick-up (31-36%) and cooked yield (107-114%) were not significantly different among the batter formulations.

Oil Absorption

Batter formulation	Oil content (%)	
Control	43.19±0.83 ^a	
20% Kreation MB	35.91±0.35 ^b	
20% Kreation BK	31.86±2.33°	
20% HAC	33.06±0.58°	
20% Batter225	32.35±2.08°	

- ➤ The substitution of 20% modified starch into the batter formulation decreased the oil content in crust of fried chicken.
- ➤ The batter containing Kreation BK had the highest relative oil reduction (~26%)

Effect of Modified Starch Content

Summary

- ➤ The substitution of 20% modified starches in the batter formulations reduced water retention capacity and viscosity of the batters.
- ➤ Batter characteristics e.g. pick-up and cooked yield were not affected by the replacement of 20% modified starches.
- ➤ Batters containing 20% modified starches significantly lowered oil absorption in crust of fried chicken with the highest oil reduction of Kreation BK batter.
- ➤ The degree of cross-linking which in turn resulted in the limited hydration property could be the leading factor in the reduction of oil content for the modified starch-substituted batters.
- ➤ More information can be found in Gamonpilas et al. (2013) Effects of crosslinked tapioca starches on batter viscosity and oil absorption in deep-fried breaded chicken strips, J. Food Eng 114, 262-268

