

Precise Geospatial Positioning with current multi-GNSS constellations

<u>Dr. Octavian Andrei</u>

Department of Survey Engineering, Chulalongkorn University, Thailand

NAC2015: 11th NSTDA Annual Conference

Pathum Thani, Thailand 02-Apr-2015

Agenda

- Why GNSS?
- How precise is GNSS?
- What enables Precision GNSS?
- Practical examples
- Conclusions

Geospatial is not special but pervasive and/or ubiquitous

Geospatial World Annual Survey

Global trends of geospatial tech usage

10 / Geospatial World / February 2015

Geospatial World Annual Readers' Survey 2014

Octavian.A@chula.ac.th

Aviation

1.0%

GSA GNSS Market Report

- By 2019, there will be over **7 bln** devices – for an average of one device per person on the planet.
- LBS and Road dominate cumu-• lative GNSS revenues
- The primary region of global • market growth will be Asia-Pacific.
- Almost 60% of all available • receivers, chipsets and modules are supporting a minimum of two constellations.

Cumulative core revenue 2013-2023

Supported constellations by receivers – All segments

LBS

53.2%

Satellite Navigation Champions League

March 25, 2015

March 28. 201

GPS IIF-9 Successfully Lifts Off from Cape Canaveral

The U.S. Air Force's ninth GPS Block IIF satellite (GPS IIF-9) launched on time Wednesday at 2:36 p.m. EDT (1836 GMT) from Space Launch Complex 37 at Cape Canaveral Air Force Station, Fla. The GPS satellite has been deployed by the Delta IV rocket. read more

Two Galileo Satellites Launched for Europe's Navigation Constellation

UPDATE: The two Galileo satellites are confirmed separated from their Soyuz Fregat upper stage into 22,522 altitude orbit right on schedule, according to ESA. Both are in their planned orbits. Two more Galileo satellites were successfully launched... read more

India's IRNSS-1D Launched

The fourth satellite of IRNSS satellite navigation constellation, IRNSS-1D, was launched onboard PSLV-C27 on Saturday, March 28, according to the Indian Space Research Organization (ISRO). The Polar Satellite Launch Vehicle blasted off at 11:49 GMT (7:49... read more

March 30, 2015

China Launches First of Next-Gen BeiDou Satellites

UPDATE (3/31/15): The BeiDou satellite is being targeted for an IGSO orbit, not a MEO orbit as previously speculated. The two images below make this clear. Below is a CCTV (China Central Television) news story covering the launch. ... read more

Chulalongkorn University סָשָׁהַאָסָאָראָסָרָאָראָסָרָאָרָ Pillar of the Kingdom

NAC 2015 02-Apr-2015 6 Octavian.A@chula.ac.th

新华网

Current status as of April 2015

US: GPS (Global Positioning System)		Russia: GLONASS (Global Navigation Satellite System)	CLONASS
System: 32 MEO satellites (29 operational) Baseline constellation: 24+3)	System: 28 MEO satellites (24 operational) Baseline constellation: 24	
EU: Galileo	** @ **	China: BeiDou	ATT AND
System:	GALILEO	System:	AnithanicOngrees handplan and
8 MEO satellites (unavailable unti Baseline constellation: 27+3	2015-04-20)	5 GEO + 5 GSO + 4 MEO Baseline constellation: 35	
Japan: QZSS (Quasi Zenith Satellite System)	autorith Satellite Strength	India: IRNSS (Indian Regional Navigation Satellite System)	इसरो ंडल्व
1 GSO satellite operational		System:	
Baseline constellation: 4 GSO + 3	GEO	1 GEO + 3 GSO satellite (developme	nt)
		Baseline constellation: 3 GEO + 4 GS	30
Chulalongkorn University อุฬาลอกรณ์มหาวิทยาลัย	NAC 2015 02-Apr-2015	Octavian.A@cl	nula.ac.th

Pillar of the Kingdom

GNSS SEA hotspot

Image Courtesy NASA's Visible Earth Project

2015 2 18 0 0 0.0000000 GPS TIME OF FIRST OBS 2015 2 18 23 59 59.0000000 GPS TIME OF LAST OBS 0 RCV CLOCK OFFS APPL 16 LEAP SECONDS	• • •					🖹 nsa	t79.txt	
2015 2 18 23 59 59.0000000 GPS TIME OF LAST OBS 0 RCV CLOCK OFFS APPL 16 LEAP SECONDS	2015	2	18	0	0	0.000000	GPS	TIME OF FIRST OBS
0 RCV CLOCK OFFS APPL 16 LEAP SECONDS	2015	2	18	23	59	59.0000000	GPS	TIME OF LAST OBS
16 LEAP SECONDS	0							RCV CLOCK OFFS APPL
	16							LEAP SECONDS
79 # OF SATELLITES	79							# OF SATELLITES

How precise is GNSS?

10 m

1 cm

1 m

1 mm

NAC 2015 02-Apr-2015 9

GNSS Signals

- Carrier
- Code
- Data
- Multiple frequencies
- Multiple channels
- Data carried:
 - CDMA vs. FDMA
 - PRN codes: C/A, P(Y), L2C, L5C (I/Q), L1C, E5a+5b, E6, LEX, etc
 - Almanac approximate location
 - Ephemeris precise location, unique data
 - NAVDATA time, date, and health

BeiDou

NAVIGATION BANDS

GLONASS-M, GLONASS-K

FDMA NAVIGATION BANDS

Pseudorange

Definition:

$$P_r^s \equiv c\tau = c(\overline{t_r} - \overline{t}^s)$$
(m)

"The pseudorange (code) measurement is defined to be equivalent to the difference of the time of reception (expressed in the time frame of the receiver) and the time of transmission (expressed in the time frame of the satellite) of a distinct satellite signal." (RINEX 2.10)

Transmitted code

Carrier phase

"The carrier-phase measurement is a measurement on the beat frequency between the received carrier of the satellite signal and a receiver-generated reference frequency." (RINEX 2.10)

• Distance from the satellite to the user's antenna can also be expressed in terms of number of wavelengths (cycles) of the signal carrying the codes.

- Indirect and ambiguous
- Wavelength of GPS L1 carrier ≈ 19 centimeters
- Fractional part ("phase") of a given wavelength can be measured to 1/100 of a wavelength ~ resolution of 2 mm
- Enables position relative to a known point with centimeter accuracy

Code vs. carrier-based positioning

Feature	Code-based (Standard Positioning)	Carrier-based (Precise Positioning)	
Observables	Pseudorange (code)	Carrier-Phase + Pseudorange	
Receiver noise	3 m / 30 cm	3 cm	
Multipath	30 cm – 30 m	1 – 3 cm	
Sensitivity	High (< 20 dBHz)	Low (> 35 dBHz)	
Discontinuity	No Slip	Cycle-Slip	
Ambiguity	-	Estimated / Resolved	
Receiver cost	Low (€100+)	Expensive (€10k+)	
Accuracy (RMS)	3 m (H), 5 m (V) Single 1 m (H), 2 m (V) DGNSS	5 mm (H), 1 cm (V) Static 1 cm (H), 2 cm (V) RTK	
Applications	General navigation, Fleet management, Geocaching, Timing, SAR, LBS,	Surveying (land, sea and air), Machine Guidance, Deformation Monitoring, Datum Monitoring, Precise Engineering, etc.	

Sources of error in GNSS

Satellite-dependent

- Orbit errors, clock errors
- Phase wind-up, PCO, PCV, biases

Signal-dependent

- Ionospheric & tropospheric delays
- Multipath
- Cycle slips

Receiver/site-dependent

- Receiver clock error, noise
- Antennae, biases ... lots of them

Error mitigation

- By using theoretical and empirical models
 - e.g., Point Positioning

- By using differentiation principle
 - e.g., DGNSS, RTK, NRTK

General Standalone GNSS positioning

NAC 2015 02-Apr-2015 16

Precise GNSS positioning

NAC 2015 02-Apr-2015 17

What enables precise positioning?

- Cm-level accuracy has been possible for more than 10 years!
- The enablers
 - Easily accessible correction data
 - Advanced positioning algorithms

Correction data

Before

- Your own base receiver
- Radio link (limited to 3 km, affected by terrain)
- Availability of radio channels
- Long delays for precise orbits and clocks

Now

- RTK correction services development, broadcast over cellular frequencies
- Base station data available 24/7 via CORS network
- Rapid precise orbits and clock corrections
- Increased quality of corrections delivered over L-band / SSR / MSM

Advanced positioning algorithms

Real-Time Kinematic (RTK)

- User determines the position of an unknown point (rover) with respect to a known point (base)
 - At least a pair of receivers
- Simultaneous observations
 - Time-tagged GNSS measurements are transmitted from the base
 - The differentiation process takes place at the rover
- Baseline and position at rover
- Faster fixes over longer baselines
- Single base or Network RTK

Precise Point Positioning (PPP)

- Precise orbits and satellite clocks
- Carrier phase observations
- **Single** (dual-Frequency) receiver
- Iono-free data combinations ()
- Significant improvements in the last decade
- Post-processing (popular)
- Real-time (now)
- Cm-level accuracy in kinematic, real-time achievable

Drivers for GNSS performance

- Quality and type of measurements
 - antenna + receiver
- Error modelling
 - Comprehensive & long list (especially for PPP)
- Positioning mode
 - Point (SPP, PPP) vs. Relative (DGNSS, RTK, NRTK)

Practical examples

• SPP

- Single- vs. multi-system solution

PPP static

- Single- vs- multi-system solution

PPP kinematic

Boat-mounted mapping system trajectory

CUUT: Multi-GNSS CORS @Chula

Туре	Signal	Enable	Options
GPS	L1 - C/A		
GPS	L2E		L2C and L2E 🛊
GPS	L2C		CM + CL 🛊
GPS	L5		[+ Q 🛊
SBAS	L1 - C/A		
SBAS	L5		
GLONASS	L1 - C/A		
GLONASS	L1P		
GLONASS	L2 - C/A		L2 - C/A(M) and P \$
GLONASS	L3		Data + Pilot 💲
Galileo	E1		
Galileo	E5 - A		
Galileo	E5 - B		
Galileo	E5 - AltBOC		
BeiDou	B1		
BeiDou	B2		
QZSS	L1 - C/A		
QZSS	L1 - SAIF		
QZSS	L1C		
QZSS	L2C		
QZSS	L5		
QZSS	LEX		Pilot

Single Point Positioning (CUUT, 2015/02/01)

24 hr, 30 sec rate, 5 deg elevation cut-off

NAC 2015 02-Apr-2015 24

SPP (different elevation cut-offs)

GNSS	Elevation cut-off 5 deg			Elevation cut-off 30 deg			Elevation cut-off 45 deg		
constellation	RMS		RMS			RMS			
	U	2D /	Availability	U	2D /	Availability	U	2D /	Availability
G	7,00	6,33	100,0	7,53	5 <i>,</i> 93	94,22	11,37	6,49	10,96
R	9,16	7,69	99,4	27,97	19,08	33,75	70,38	13,50	0,17
С	6,65	7,52	99,4	10,98	8,92	97,70	14,69	8,99	61,20
GR	6,56	6,42	100,0	6,60	5,09	100,00	114,75	57,03	36,64
GJ	6,53	6,76	100,0	6,42	6,14	96,42	11,23	6,18	20,15
GC	6,89	6,46	100,0	8,00	6,60	100,00	15,92	9,66	89,60
GRJ	6,20	6,68	100,0	5,97	4,88	100,00	68,85	24,69	47,81
GRC	6,70	6,40	100,0	7,57	6,09	100,00	69,16	52,92	94,08
GJC				7,48	6,05	100,00	11,36	8,68	91,96
GRJC	6,60	6,47	100,0	7,13	5,58	100,00	68,39	52,45	95,06

G= GPS, R=GLONASS, C=BeiDou, J=QZSS

Multi-GNSS means increased availability, continuity, integrity and accuracy.

Precise Point Positioning

PPP (15 deg) vs. PPP (30 deg)

GNSS	Elevation cut-off 15 deg			Elevation cut-off 30 deg		
constellation	RMS				RMS	
	U	2D A	vailability	U	2D .	Availability
G	0,028	0,011	100,0	0,065	0,010	94,79
R	0,076	0,063	97,2	0,435	0,406	31,60
С	13,837	15,436	50,3	19,288	12,556	26,74
GR	0,035	0,013	100,0	0,067	0,006	100,00
GJ	0,040	0,051	100,0	0,117	0,111	96 <i>,</i> 88
GC	0,189	0,064	100,0	0,516	0,099	100,00
GRJ	0,043	0,051	100,0	0,112	0,118	100,00
GRC	0,130	0,034	100,0	0,422	0,076	99,65
GRJC	0,135	0,065	100,0	0,411	0,268	100,00

Why?

G= GPS, R=GLONASS, C=BeiDou, J=QZSS

Multi-GNSS precise positioning means also complex error models to account for biases between signals, frequencies, and different systems.

Kukko, A., Andrei, C-O., Salminen, V.M., Kaartinen, H., Chen, Y., Rönnholm, P., Hyyppä, H., Hyyppä, J., Chen, R., Haggren, H., Kosonen, I., Capek, K. (2007). Road environment mapping system of the Finnish Geodetic Institute - FGI ROAMER. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVI, Part 3/W52, pp.241-248, ISSN 1682-1777

PPP algorithm requires complex error modelling

- Precise orbits (*.sp3)
- Precise clocks (*.clk_05s)
- Absolute antenna phase center variations (igs05.atx)
- Differential code biases (P1C1 DCB)
- Ocean Loading (*.BLQ)
- Pole displacements (*.ERP)
- Phase wind-up
- Elevation cut-off: 10 deg

- Stochastic model
 - Random walk: E, N, H, tropo
 - White noise: rx_clk
- Standard deviation
 - Code: 4 m
 - Phase: 0.2 m
- Coordinates
 - Uncertainty: 100 m
 - Test A: 2 m/s (Hz), 0.5 m/s (Vert)
 - Test B: 5 m/s (Hz), 0.5 m/s (Vert)
 - Test C: 10 m/s (Hz), 0.5 m/s (Vert)
- Tropo: 3x10⁻⁸ m²/s

Post-Processing: PPP Kinematic Forward

Statistics	North (m)	East (m)	Up (m)	2D (m)
Mean	-0,035	-0,067	0,293	0,151
RMS	0,194	0,167	0,837	0,256

Ground truth: TC GPS/INS combined solution

NAC 2015 02-Apr-2015 30

For ≈60% of the recorded epochs, 2D positioning errors are less than 10 cm.

Andrei, C-O., Kaartinen, H., Kukko, A., Satirapod, C. Precise carrier phase-based point positioning of boat-mounted terrestrial remote sensing platform. Localization and GNSS (ICL-GNSS) 2014, IEEE Conference Publications, IEEE Xplore, June 24-26, 2014, Helsinki, Finland, ISBN: 978-1-4799-5122-2.

Longitude [degree]

Conclusions

- It is no longer just about GPS!
- But multiple constellations, frequencies, signals
- Multi-GNSS means increased availability, continuity, integrity and accuracy
 - Also more challenges to be solved (e.g., IFB, ISB, AR, etc.)
- Precise positioning becomes more available because of correction data and advanced positioning algorithms

Thank you for Your attention!

อาควิชาวิศวกรรมสำรวจ DEPARTMENT OF SURVEY ENGINEERING

http://www.sv.eng.chula.ac.th

Chulalongkorn University

Phayathai Road, Pathumwan, Bangkok 10330, Thailand

NAC 2015 02-Apr-2015 33