

Phenotyping for resource use efficiency traits from the lab to the field: traits and technologies

Fabio Fiorani

Institute of Bio and Geo-Sciences IBG2 Plant Sciences, Research Center Jülich, Germany

JÜLICH FORSCHUNGSZENTRUM

Phenotypes are quantitative and multi-dimensional

Griffiths et al. An Introduction to genetic analysis

STUDYING PHENOTYPIC PLASTICITY TO THE ENVIRONMENT IS KEY TO UNRAVEL GENE-PHENE RELATIONSHIPS

Environmental factors vary in space and time

Walter et al., Annual Review Plant Biology, 2009

Non-invasive technologies are crucial to partly address the phenotyping bottleneck

QUANTITATIVE DESCRIPTORS OF PLANT STRUCTURE
AND FUNCTION AT VARIOUS SPATIAL AND TEMPORAL SCALES

Plant sciences for improved resource use efficiency and optimized biomass

Improving value of phenotyping for plant breeding programmes

- Quantitative screening for optimized shoot biomass, photosynthesis and root architecture (low water and nutrients)
- Development non-invasive methods, standards, and infrastructure
 (HTP and functional mechanisms)

Focus on plasticity and heritability of shoot traits

Shoot Traits/Parameters	Goal
Early vigor, shoot phenology	Reduce soil evaporation/Max. Harvest Index
Water relations	Increase Water Use Efficiency
Leaf senescence, flowering, and branching	Increase Nutrient Use Efficiency
Shoot architecture	Increase Light Use Efficiency
Shoot mechanical properties	Reduce lodging/Quality of renewable biomass

- Comparison and ranking of candidate genotypes greenhouse and field
- Quantitative assessment of Genotype x Environment interactions

Automated systems for shoot phenotyping

We established and automated screening system based on active fluorescence imaging to analyze shoot growth and PSII status

PSII dynamic responses as proxies for photosynthetic activity and photoprotection:

- Fv/Fm
- Electron Transfer Rate
- Non-Photochemical Quenching

High-throughput screening with RGB cameras for small plants

- pixelsize
- leaf area (mm²)
- average red / green / blue channel value
- plantId, position, date, time, trayId

Temperature responses of natural variants in Arabidopsis

PhenOMIS database architecture (Phenotyping Observation and Measurement Information System)

Reconstructing area development for diverse shoot architecture

Automated systems for shoot phenotyping

Feature extraction by Support-Vector-Machines algorithms

- Analysis of pictures by SVM Segmentation (Support Vector Machine Segmentation)
- Dynamic differentiation between color points of plant and background in color space
- Separation of plant from background by color information of 2 different example pictures

Segmentation data correlate to leaf area and biomass

Biomass of crop plants compared to PLA at optimal view angles

Mobile Devices

We developed an application (App) for mobile devices, with the possibility to segment and analyse the image directly on the device

Development tools

File Size: 450kb including supplemental files

Programming language

OpenCVImage analysis library

Mobile devices – user interface

Segmented image

Application of novel methods to bridge existing gaps

Optimize leaf and canopy orientation to improve light use efficiency

Characterize short- and long-term changes in pigment composition

Increase accuracy of quantitative measurements of shoot water content

3D imaging

Multispectral imaging

Cavity resonance

Field proximal and remote sensing methods at IBG2

Field-Mobile

Field-Lift

Field-Bee

Field-Ship

HyPlant

Field: Portfolio of measurement modes

- Canopy photosynthesis
 - Laser-induced fluorescence systems (LIFT)
 - Passive, sun-induced fluorescence measurement

- passive thermography
- active thermography

- stereo cameras
- LIDAR
- structured light

Stereo imaging enables quantifying 3D canopy structure

What below-ground root architecture targets for increased productivity?

Nutrient foraging

Effective uptake of nutrients

Metabolic efficiency

SCREENROOT-SP: Dynamic analyses of small plants root and shoot systems growth and geometry

(200 plants – 14 min) for agar-grown plants

automated analysis of time series for root and shoot parameters

Observing roots using soil and transparent interfaces

GROWSCREEN-RHIZO: a new automated system for 2D imaging of roots and shoots

GrowScreen Rhizo workflow

Image recording

Acquisition Server

Cut

Image enhancement

Intensity Correction

Segmentation

Feature based SVM

Thinning

Paint

Analysis

Visible root length correlates with global root parameters

Visible root length (cm)

Dynamic responses to low nitrate supply

% change in Total Root Length

Fiorani and Schurr, Annual Review Plant Biology, 2013

- Design novel assays to quantify individual and combined effects of limiting environmental factors
- Enable multi-trait based selection with novel platforms for simultaneous phenotyping of shoot and root traits
- Build analytical framework from single plants to canopies within integrated greenhouse-field programs

Phenotyping requires multiple competences and long term sustainability

SHOOT & ROOT BIOLOGY

SYSTEMS AUTOM.

IT & IMAGE ANALYSIS

DATA ANALYSIS

