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Abstract: In this paper, we propose hot-wire plasma welding, a combination of the plasma welding
(PAW) process and the hot-wire process in the additive manufacturing (AM) process. Generally,
in plasma welding for AM processes, the deposit grain size increases, and the hardness decreases as
the wall height increases. The coarse microstructure, along with the large grain size, corresponds
to an increase in deposit temperature, which leads to poorer mechanical properties. At the same
time, the hot-wire laser process seems to contain an overly high interstitial amount of oxygen and
nitrogen. With an increasing emphasis on sustainability, the hot-wire plasma welding process
offers significant advantages: deeper and narrow penetration than the cold-wire plasma welding,
improved design flexibility, large deposition rates, and low dilution percentages. Thus, the hot-wire
plasma welding process was investigated in this work. The wire used in the welding process was
a titanium American Welding Society (AMS) 4951F (Grade 2) welding wire (diameter 1.6 mm), in
which the welding was recorded in real time with a charge-coupled device camera (CCD camera).
We studied three parameters of the hot-wire plasma welding process: (1) the welding speed, (2)
wire current, and (3) wire feeding speed. The mechanical and physical properties (porosity, Vickers
hardness, microstructure, and tensile strength) were examined. It was found that the number of
layers, the length and width of the molten pool, and the width of the deposited bead increased,
while the height of the layer increased, and the hot-wire current played an important role in the
deposition. In addition, these results were benchmarked against specimens created by a hot-wire
plasma welding/wire-based additive manufacturing process with an intention to develop the hot-
wire PAW process as a potential alternative in the additive manufacturing industry.

Keywords: hot-wire; plasma welding; additive manufacturing; wire feed; titanium alloy; mechani-
cal properties

1. Introductions

Additive manufacturing (AM) describes technologies that are used to fabricate 3D
objects by adding a cross-sectional layer upon a layer of liquid, powder, wire, or sheet
material, whether the material is metal, polymer, or others. AM is currently being used
to develop and customize end-use products in several industries. The relatively low cost
for the low-volume development of near-net-shape components, lower net processing
expenses, shorter lead times, and the construction of more complicated geometries are
some advantages of using AM technologies over conventional tooling-based methods such
as casting or machining.
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At present, several welding techniques are applied to AM processes, such as gas
tungsten arc welding (GTAW) [1–5], electron beam melting (EBM) [6,7], gas metal arc
welding (GMAW), laser welding [8–11], and plasma welding (PAW) [12]. The principle of
the hot-wire process is to heat the filler wire (or passing current), which makes the filler
wire heat up by a separate power source until it is close to the melting point, and feed
hot-wire to the weld pool. Prior to reaching the welding pool, the filler wire is heated
resistively. This provides benefits in terms of metallurgical control, energy efficiency, and
the rate of deposition. Importantly, the filler wire can be melted independently of the arc
heat source that melts the base metal [13]. The filler wire is melted by current heating
from the hot-wire system, independently of the deposition rate from the arc current. The
hot-wire addition from [14] can achieve a low dilution ratio, a narrower HAZ width, and a
higher weld metal hardness. Moreover, increasing the hot-wire current and the wire feed
rate also provides for a better and desired weld pool [15]. Based on the investigations,
combining hot-wire feeding with the welding process appears to have the potential to
achieve high efficiency and welding faster; in other words, the combination of higher
hot-wire feeding and a lower welding current resulted in a much lower heat input while
maintaining the same deposited metal volume achieved using a higher welding current.
Moreover, the bead geometry was described in terms of width, penetration depth, and
the area of fusion. In [16], on Consumable Electrode Arcless Electric Working, it is found
that the hot-wire process is a forming metal deposited by passing an arc current through
it, and the filler wire heats up. The filler wire is melted and fed heat by its own hot-wire
machine, so the filler wire can be melted independently of the arc heat source, which melts
the base metal. The deposition of the material is carried out layer by layer and finished
when the geometry is developed [17]. The titanium alloy also has a high specific strength,
a high fracture toughness, an excellent corrosion resistance, and a low density, which
leads to its wide applicability in the manufacturing of parts [18,19]. In recent years, there
have been many studies [15,20,21] on hot-wire GTAW, hot-wire GMAW, and hot-wire laser
welding; most of the works are about suitable parameters and their effect on the quality
of the workpiece received, the mechanical properties, and the penetration depth. The
penetration depth of the metal is in the layer-by-layer deposited weld, and the temperature
of the surrounding heat zone higher. Selecting unsuitable parameters can result in welding
defects. The effect of vibration and hot-wire gas tungsten arc is on the geometry. Cold-wire
GTAW and the vibrating wire feeder decreased the droplet release time, while no significant
difference in the weld bead geometry was observed in cold-wire or hot-wire GTAW [5]. Pai
et al. [22] studied the mechanical properties (tensile, hardness, and bend tests) to compare
the results between the use of hot-wire and cold-wire GTAW. The results showed that the
hardness, bend, and tensile properties of hot-wire and cold-wire GTAW processes were
similar, and there was no significant difference between them. The hot-wire GTAW process
has the advantage of high quality with an excellent weld profile and high productivity.
At the same time, Naksuk et al. [23] studied the temperature generated during welding
recorded in real time with a high-speed infrared thermography camera for the hot-wire
plasma arc welding process.

AM via hot-wire PAW freeform welding, which is the main focus of this study, can
investigate the influence of the hot-wire PAW technique of titanium alloy on the AM
process. Moreover, the high content of oxygen and nitrogen formed after part forming
by AM was the main cause of cracking in the hot-wire laser welding process. The work
of [15] was conducted to study the suitable parameters of hot-wire GTAW, such as the
welding current, the hot-wire current, and the wire feed rate. The results obtained indicate
that, for a constant welding current, increasing the hot-wire current and wire feed rate
provides stable voltage–current characteristics and a higher bead weight. The ordinary
parameters of the hot-wire process, such as the wire current, wire feed rate, wire size,
wire feed angle, and gas shield, have an important effect on the quality of the workpiece
received [20,21]. While research papers on the hot-wire process are available [24–26],
there is limited research on hot-wire plasma welding. Therefore, it is important to study
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the basic parameters of hot-wire plasma welding to obtain good mechanical properties in a
titanium welding workpiece. The definitions of good mechanical properties of titanium
alloy grade 2 provided an excellent balance of medium strength and reasonably good
ductility.

2. Materials and Experimental Procedure
2.1. Experimental Material and Equipment

Titanium alloy plates of grade 2 in the additive manufacture with the dimensions
of 135 mm (width) × 350 mm (length) × 10 mm (thickness) were welded in this study.
The substrate materials used a titanium alloy grade 2, the dimensions of 135 mm ×
350 mm (width × length), and a thickness of 10 mm. These have a chemical composition
measured using an energy-dispersive X-ray spectroscopy (EDS) machine (Shimadsu, Kyoto,
Japan) with a standard chemical composition and mechanical physical [27–29] values as
in Tables 1 and 2.

Table 1. The chemical composition of the titanium alloy grade 2.

Elements Standard (% w/w)

N 0.03
C 0.08–0.10
H 0.015
Fe 0.30
O 0.25

Iron 0.30
Ti Balance

Table 2. The mechanical properties of the titanium alloy grade 2.

Mechanical Properties

Mechanical Properties Standard Value Units

Average tensile strength 485 MPa
Yield strength (0.2% offset) 275–448 MPa

Elongation (% EL) 18–20 %
Hardness Vickers 160–200 HV

Modulus of elasticity 103 GPa

The filler wire was a titanium AMS 4951F (Grade 2) welding wire with a diameter of
1.6 mm in the welding process, which is a filler metal process by the American Welding
Society (AWS, Miami, FL, USA). The workpiece was securely clamped by jigs and fixtures
to prevent it from moving or from deflection during the hot-wire plasma welding process.
The plasma arc welding torch was attached to a 6-axis ABB robot of freedom, which was
used to generate the movement of the welding torch relative to the reference point on
the substrate. The articulated robots, feature six axes, also called six degrees of freedom.
The 6-axis robots allow for greater flexibility than robots with fewer axes. It also allows
freedom of movement in three-dimensional space. The robot is the handle of the torch
head only. Thus, we do not have to build up the Z-axis to facilitate the movement and
maintain the arc distance of the robot. The movement in the additive build direction is
performed by the robot and the writing codes to control the direction of the robot. Robot
studio is software developed by ABB robot that writes a working sequence for robots.
The power source was used to begin the process of welding and was operated with the
robot in tandem.

Figure 1 shows the setup of the hot-wire plasma welding system, which includes a
robot control cabinet, a plasma arc welding torch, a hot-wire machine, a monitoring system
consisting of a CCD camera, and an ABB limited robot.
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Figure 1. Setup of the hot-wire plasma welding for the additive manufacturing (AM) process system.

Plasma welding also uses hot wires in the depositing process. The plasma welding
controller from the Cebora machine brand (Bologna, Italy) was used for controlling various
parameters for plasma welding. The hot-wire unit used in this research is from MAC brand,
Power assist IV-642 model (Osaka, Japan) [23], with a wire feed system to the welding torch,
which is attached to the robotic arm used for controlling the hot-wire plasma welding path.
The plasma torch was at the front, while the hot-wire was fed behind the plasma welding
torch. The experimental setup of the hot-wire unit depends on plasma welding parameters,
where the arc current and welding speed of the robot are constant. We then adjusted the
relationship of the wire current and the wire feed speed so that the added filler wire can
move continuously in the melting pool. The hot-wire PAW process was carried out under
the inter gas (argon) shield.

2.2. Methodology

The designs of the full factorial experiments used in this study were based on three
factors, (1) the welding speed [mm/s], (2) the wire current [A], and (3) the wire feeding
speed [m/min] using a significant level, α = 0.05, by strictly controlling the other factors at
the same value and condition for hot-wire plasma welding.

Thus, in this experiment, there were a total of 23 = 8 trials. An example of an image
obtained from the results of the designed experiment is shown in Table 3 and Figure 2.

Table 3. The welding experimental conditions of eight welding specimens for hot-wire plasma weld-
ing.

No.
Welding

Speed
[mm/s]

Arc
Current

[A]

Arc
Voltage:

Final
[V]

Heat
Input

[kJ/mm]

Hot-Wire Reverse Feed Speed

Wire
Feed

Speed
[m/min]

Wire
Current

[A]
m/min s

1.1 3.00 120 21.6 0.518 1.70 35

5.00 0.99

1.2 3.00 120 22.2 0.533 1.70 35
2.0 1.83 120 23.4 0.921 0.85 35
3.0 3.00 120 23.9 0.574 0.85 30
4.0 1.83 120 24.7 0.972 1.70 35
5.1 3.00 120 24.0 0.576 0.85 35
5.2 3.00 120 21.3 0.511 0.85 35
6.1 1.83 120 25.0 0.984 1.70 30
6.2 1.83 120 20.5 0.807 1.70 30
7.0 3.00 120 20.6 0.494 1.70 30
8.0 1.83 120 20.6 0.810 0.85 30
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Figure 2. Deposited single beads for a designed experiment for the hot-wire plasma welding process
(Numbers 1–8).

The single bead number 2.1 had a better appearance and shape than the other weld
beads and met the requirements. In addition to the above criteria, we found that the
filling wire was not a problem, with no interruption, no splashes, and a smooth movement.
The wire tip did not stick to the ceramic tip while the wire was pulled back (ceramic rod:
wire support). Thus, the welding condition of single bead number 2.1 was applied for the
deposited wall of the hot-wire PAW process. The hot-wire plasma welding parameters
used in this research are shown in Table 4.

Table 4. The parameters used for the hot-wire plasma welding process.

Parameters Details Unit

Welding speed 0.85–3.00 mm/s
Wire feeding angle 38 deg

Wire feeding position 1 mm
Stand-off distance/Arc

distance 6 mm

The flow rate of shielding gas 20 (Ar) l/min
Arc current 120 A

Wire current (Amperage) 30–35 A
Wire feeding speed 0.85–1.70 m/min

Pilot arc 20 A
Gas plasma 0.5 l/min
Gas shield 20 l/min

Plasma gas flow rate 0.5 l/min

Titanium is a metal that is sensitive to high-temperature oxidation. Titanium welding
is required under the suitable shielding gas or inside a covered gas box. A shielded
environment is required during the hot-wire plasma welding process for the wire + arc
additive manufacture of titanium alloys to prevent oxidation and cracks. If air interacts
with the weld, an oxide is formed with a color that depends on the thickness of the oxide
layer. The acceptability level of the color depends on the application. The workpiece is
found to have oxidation during the build of the first weld. Applying the shielding can
increase the flexibility of the process. An example of a flow-purge welding chamber was
used in the hot-wire PAW process shown in Figure 3. The positions of the weld bead height
and bead width measurement are shown in Figure 4.
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The welding process started from the right-hand side of the workpiece and ended at
the left-hand side, as shown in Figure 5. The dimensions of the welded wall structures
were 13.25 mm (width), 300 mm (length), and 63.2 mm (height).

Materials 2021, 14, 1270 7 of 20 
 

 

 
Figure 5. Photographs of the deposited walls: 36 layers. 

2.2.1. Porosity Analysis 
The current detection of the inside pore and other defects are frequently per-formed 

using the X-ray method after welding. This method is an X-ray application with computed 
tomography (XCT), which is a high-resolution system for 2D X-ray inspection, 3D com-
puted tomography, and the measurement of various metal materials from GE Phoenix, 
system: V|tome|X S (Boston, MA, USA) using a high-power nano focus X-ray tube. 

2.2.2. Vickers Microhardness 
Vickers microhardness tests for specimens were carried out with a diamond-shaped 

pyramid head. The pyramid’s top angle was 136 degrees. This test can measure the hard-
ness of a very soft metal, about 5 Kgf/mm2, or that of a very stiff metal, about 1500 
Kgf/mm2, without changing the indenter. It only changes the pressure. The values be-
tween 1 and 120 Kgf depend on the hardness of the metal [30]. 

The wall was cut into three sections. A schematic illustration of micro-hardness meas-
urement points on the profile of the wall, with the microhardness of the layer bands (top, 
middle, and bottom region) of the wall, is shown in Figure 6. Each position was measured 
thrice; an average of these measurements was then calculated and is graphically dis-
played. The cut samples of all three specimens underwent grinding and polishing and 
became the cross-section area of the workpiece. During grinding, the workpiece was lu-
bricated with water. 

The instrument used was a Microhardness Tester Anton-Paar, MHT-10, S/N 240826 
(Anton Paar, Graz, Austria) The test conditions of the hardness test were performed under 
the ASTM specs standard test method E92 [31], with a US specs standard test method 
AMS 4951 welding wire [32]. The wall was cut into sections at three positions. In [33], 
square samples, such as the top, the middle, and the bottom region of the wall, were taken 
in the direction of the horizontal construction at the center of layer bands. 

Figure 5. Photographs of the deposited walls: 36 layers.

2.2.1. Porosity Analysis

The current detection of the inside pore and other defects are frequently per-formed
using the X-ray method after welding. This method is an X-ray application with computed
tomography (XCT), which is a high-resolution system for 2D X-ray inspection, 3D com-
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puted tomography, and the measurement of various metal materials from GE Phoenix,
system: V|tome|X S (Boston, MA, USA) using a high-power nano focus X-ray tube.

2.2.2. Vickers Microhardness

Vickers microhardness tests for specimens were carried out with a diamond-shaped
pyramid head. The pyramid’s top angle was 136 degrees. This test can measure the
hardness of a very soft metal, about 5 Kgf/mm2, or that of a very stiff metal, about
1500 Kgf/mm2, without changing the indenter. It only changes the pressure. The values
between 1 and 120 Kgf depend on the hardness of the metal [30].

The wall was cut into three sections. A schematic illustration of micro-hardness
measurement points on the profile of the wall, with the microhardness of the layer bands
(top, middle, and bottom region) of the wall, is shown in Figure 6. Each position was
measured thrice; an average of these measurements was then calculated and is graphically
displayed. The cut samples of all three specimens underwent grinding and polishing
and became the cross-section area of the workpiece. During grinding, the workpiece was
lubricated with water.
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Figure 6. Schematic illustration of microhardness measurement on the profile of the microhardness
of layer bands.

The instrument used was a Microhardness Tester Anton-Paar, MHT-10, S/N 240826
(Anton Paar, Graz, Austria) The test conditions of the hardness test were performed under
the ASTM specs standard test method E92 [31], with a US specs standard test method AMS
4951 welding wire [32]. The wall was cut into sections at three positions. In [33], square
samples, such as the top, the middle, and the bottom region of the wall, were taken in the
direction of the horizontal construction at the center of layer bands.

2.2.3. Tensile Strength

The tensile test is one of the most common tests used for material evaluation. The ten-
sile test is performed in its easiest way by gripping the other ends of a test part (specimen)
within the testing machine loading frame. In tensile tests, the test specimen will be pulled
slowly. After that, the specimen will lengthily stretch, and the tensile may be increased
steadily until the test specimens are fracture. The forces-extension data are normally moni-
tored and recorded during the process, which is a quantitative measure of how the test part
deforms under the applied tensile force. The stress and strain values are recorded, and the
curves are plotted. The tensile testing according to ASTM is E8 [29] for metals, etc. ASTM
E8 describes tensile testing of metals and is the actively used standard for the testing of
metals. The sample used for testing will have different characteristics for metal, and may
be made of sheets or bars. The dimensions of the tensile specimens in mm are shown in
Figure 7.
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2.2.4. Microstructure

We prepared the workpiece to observe the microstructure and microstructure picture
of the hot-wire plasma welding process with a LEXT 3D measuring microscope OLS4100
(Olympus, Waltham, MA, USA). The microstructure analysis samples were polished with
the sandpaper grades 120, 400, 600, 800, 1000, 1200, and 2500 grit by machine grinding and
polishing. At the micro-level, we used the 50×, 200×, and 500× magnification to perform
a complete visual analysis and observation.

2.3. Analysis of the Physical and Mechanical Properties

The physical and mechanical properties study in this research were performed in four
steps (porosity, Vickers hardness, tensile strength, and microstructure), and the workpiece
was divided into parts as shown in Figure 8. The workpiece was cut with a wire cut EDM
(electrical discharge machine, model: AQ325L, Sodick, Schaumburg, IL, USA) with a band
saw and using a slow cutting speed.
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3. Results
3.1. Parameters and Welding Process

The welding found that sample number 2 (Figure 2) had a better appearance and
shape than the other weld bead and met the requirements. The deposition of the hot-wire
PAW process from sample number 2 is shown in Figures 9 and 10. These parameters were
constant: a welding speed of 1.83 mm/s, an arc current of 120 A, a wire feeding speed of
0.85 m/min, and a wire current of 35 A.
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Figure 9 showed the final arc voltage value from 1 layer to 36 layers of the deposit
process. The arc voltage gives a clear indication of arc length at a given current. These sys-
tems directly measure arc voltage and control the torch height to correct the error. It may
be defined as the arc voltages that appear across the contact during the arcing period when
the current flow is maintained in the form of an arc. In addition, arc voltage depends on the
shielding gas, current, electrode angle, workpiece composition, arc blow, and wire feeding,
and it must be set for the particular conditions being used. The arc voltage rises and falls
per layer because the arc voltage values are measured from the electrode tip to the melting
pool, which leads to the results from the machine. In the experiment, it was found that
the arc voltage was not clearly controlled, the last weld sagging (falling) causing the arc
voltage to rise and instability. Arc voltage values will be measured during the arcing, and
the resulting values change with the arc distance. These arc voltage values are the final arc
voltage that occurs after the welding of each layer.

Figure 10 shows the temperature values of the deposition of the hot-wire PAW process
per layer (all 36 layers). There were temperature measurements for the weld bead: infrared
thermometer (IR) measures the temperature of the thermal radiation of the object, and
can typically measure temperature in a range of −25 ◦C to +380 ◦C (14 ◦F to 716 ◦F).
The temperature was measured on the surface of each deposited layer at the mid-point
of each welded bead layer. After finishing each deposited layer, the deposition process
resumed after five-minute break. The interpass temperature was not constant because
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the heat generated by the arc voltage was not constant. The fluctuation of the arc voltage
during the deposition process was due to the fluctuation of the arc gap distance.

The values of the bead height titanium alloy walls built by the hot-wire PAW process
from sample number 2 are shown in Figure 11.
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Figure 11 showed the values of the bead height titanium alloy walls by the hot-wire
PAW process (36 layers). The dark blue line showed the height of the weld bead in Position
1. The green line showed the height of the weld bead in Position 2. The pink line showed
the height of the weld bead in Position 3. The light blue line showed the height of the
weld bead in Position 4. The yellow line showed the height of the weld bead in Position 5.
Meanwhile, the orange line and red line showed the height of arc distance and an average
of bead height, respectively. There were two main measurements for weld bead height:
(1) The vernier caliper is a precise tool that can be used to accurately measure outside
diameter, inside diameter, and depth. (2) The welding gauge is the main scale, height
gauge, and undercut depth gauge. It is a welding inspection, for a variety of bevel angles
detecting weldments, height, width, gap, and undercut depth.

Moreover, the arc distance is the layer-by-layer movement of the robot in the build
direction. From the first layer (start), the arc distance was the distance between the torch
and the baseplate at a height of 0 mm. After that, we moved the robot according to the
average height of the welded bead in each layer. Therefore, the arc distance increases
linearly.

3.2. Porosity Analysis

In the case of titanium alloy, there is always a certain proportion of porosity, and the
content significantly depends on the use conditions [34,35]. Figure 12 shows porosity in a
sample specimen in the AM part: (a) front area; (b) back area. The porosity formed in the
titanium alloy samples produced over a range of melt scan speeds, from 100 to 1000 mm/s,
were investigated in [36].



Materials 2021, 14, 1270 11 of 19
Materials 2021, 14, 1270 12 of 20 
 

 

  
(a) (b) 

Figure 12. Defect volume of distribution of hot-wire plasma welding: (a) front area; (b) back area; scale 21:1 mm. 

The pore sizes in Figure 12 were measured using computerized tomography scans 
(CT scans) and a measuring gauge. A higher density of porosity was mainly distributed 
at the beginning of the welding process. The volume of pores measured in the part was 
47 porous in the consolidated material, per area at a scale of 21:1 mm, but the number 
density of the pores was lower in the back region. The front area had a maximum porous 
size of 1.129 mm, and a minimum porous size of 0.45 mm. The back area had a maximum 
porous size of 0.44 mm, and a minimum porous size of 0.25 mm. In the front area, the 
porosity occurred the most because it is often opened by the shielding device as welding 
begins. After several trials building walls, the shielding gas cover was improved, the gas 
content was increased, and the porosity was reduced. 

3.3. Vickers Microhardness 
The tested Vickers microhardness coupons were incised from the formed thin wall, 

with a steady value of approximately 206.21–212.73 HV from 15 mm (Position 3), 204.61–
204.61 HV from 30 mm (Position 2), and 176.15–182.66 HV from 45 mm (Position 1) from 
the base plate to the top surface (the starting point of deposition) and were along the ad-
ditive direction. These results are summarized in Table 5. 

Table 5. Results of the Vickers microhardness test for hot-wire plasma welding. 

Sample 
Positions 

Average Standard  
Deviation (SD) 1 2 3 

Position 1 182.66 181.33 176.15 180.05 2.80 
Position 2 204.61 206.11 204.61 205.11 2.70 
Position 3 212.73 211.06 206.21 210.00 1.70 

As reported for titanium alloy grade 2, US specs (AMS 4951), the average Vickers 
microhardness values of the deposited layers was around 160–200 HV [27,28]. The aver-
age of all the results was 180.05–210.00 HV. When compared with all hardness values, we 
found that the area with the least hardness was at the top area. The table shows that the 
hardness values are similar and consistent with the standard values of titanium. 

For testing the surface hardness, a microhardness indenter was used. The edge effect 
was also reported, which may result in lower hardness values. This work involved nano-
hardness indentations performed very close to the surface [37]. A maximum microhard-
ness value of micro plasma wire deposition material of 616 HV in the heat effect zone was 

Figure 12. Defect volume of distribution of hot-wire plasma welding: (a) front area; (b) back area; scale 21:1 mm.

The pore sizes in Figure 12 were measured using computerized tomography scans
(CT scans) and a measuring gauge. A higher density of porosity was mainly distributed
at the beginning of the welding process. The volume of pores measured in the part was
47 porous in the consolidated material, per area at a scale of 21:1 mm, but the number
density of the pores was lower in the back region. The front area had a maximum porous
size of 1.129 mm, and a minimum porous size of 0.45 mm. The back area had a maximum
porous size of 0.44 mm, and a minimum porous size of 0.25 mm. In the front area,
the porosity occurred the most because it is often opened by the shielding device as
welding begins. After several trials building walls, the shielding gas cover was improved,
the gas content was increased, and the porosity was reduced.

3.3. Vickers Microhardness

The tested Vickers microhardness coupons were incised from the formed thin wall,
with a steady value of approximately 206.21–212.73 HV from 15 mm (Position 3), 204.61–
204.61 HV from 30 mm (Position 2), and 176.15–182.66 HV from 45 mm (Position 1) from
the base plate to the top surface (the starting point of deposition) and were along the
additive direction. These results are summarized in Table 5.

Table 5. Results of the Vickers microhardness test for hot-wire plasma welding.

Sample
Positions

Average
Standard
Deviation

(SD)1 2 3

Position 1 182.66 181.33 176.15 180.05 2.80
Position 2 204.61 206.11 204.61 205.11 2.70
Position 3 212.73 211.06 206.21 210.00 1.70

As reported for titanium alloy grade 2, US specs (AMS 4951), the average Vickers
microhardness values of the deposited layers was around 160–200 HV [27,28]. The average
of all the results was 180.05–210.00 HV. When compared with all hardness values, we found
that the area with the least hardness was at the top area. The table shows that the hardness
values are similar and consistent with the standard values of titanium.

For testing the surface hardness, a microhardness indenter was used. The edge effect
was also reported, which may result in lower hardness values. This work involved nano-
hardness indentations performed very close to the surface [37]. A maximum microhardness
value of micro plasma wire deposition material of 616 HV in the heat effect zone was
mentioned in a previous study [38]. The hardness results of the three specimens are plotted
in Table 5. From the table, for all specimens, hardness decreases with increasing deposit
height. Specimens 1, 2, and 3 were completed with a waiting time of 10 s, and all specimens
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were completed with 200 g force. The average deposit hardness for Specimen 3 was greater
than that of Specimen 2 and Specimen 1.

3.4. Tensile Strength

The tensile test is one of the most common tests used for material evaluation. In this
paper, we used random sampling for the tensile test. The sampling positions of each wall
were sectioned. Three tensile test samples along the vertical direction were equidistantly
taken from the middle to the end of the wall. Another three tensile test samples in the
horizontal direction were evenly taken from the top to the root of each wall [39]. Tensile
testing perpendicular to the build direction produces significantly reduced ductility in
comparison to testing along the build direction [33,40]. The tensile strength of the deposited
titanium alloy in the vertical directions was less than it was in the other directions [29,31].
Tensile tests for specimens were carried out on a Universal Testing Machine: Instron 8872
(Instron, Norwood, MA, USA). The results of the tensile strength tests for the as-deposited
hot-wire plasma welding are shown in Figure 13.
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Figure 13. Engineering stress–strain curves of the specimens after hot-wire plasma welding.

Figure 13 are presents ten-row plots of the tensile strength values obtained. It shows
engineering stress–strain curves of the specimens after hot-wire plasma welding (all 10
specimens). The tensile deformation curves show extensive plastic deformation. Graph
numbers 1 and 2 show the tensile strength values of the substrate range: 495.63 MPa
and 496.65 MPa. For all rows, the tensile strength steadily decreased significantly in the
heat-affected zone (HAZ), where the values are mainly in the range of 458.43–578.86 MPa
from the bottom to the top part of the deposited sample (graph numbers 3 to 7). The
transverse zone is characterized by tensile strength values from 426.42 MPa to 429.69 MPa
(graph numbers 8 to 10). The tensile strength values of the transverse direction were worse
than those of the longitudinal direction due to the HAZ of the adjacent deposited tracks
acting on each other. The Young’s modulus values of all specimens are between 61.50 and
69.34 GPa. It can, however, be noted that, for these specimens, graph number 3 has the
highest tensile strength value compared to other graphs, since the first layers inherit the
original fine-grained structure of the substrate, so their strength is higher than it is in the
rest of the sample.

The sample of the fractured specimen is shown in Figure 14, which indicates that the
rupture occurred, and that the specimen suffered acute forming before fracturing. Ten
pieces were examined, and they all behaved similarly. In addition, the average tensile
strength value of titanium alloy grade 2 is 485 MPa [29]. When compared with the standard
tensile strength, the tensile values were similar and consistent with the standard values of
titanium alloy grade 2.
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3.5. Microstructure

The analysis of the deposited microstructure showed a number of features. The stag-
gered individual deposited tracks could be observed at low magnification. Figures 15
and 16 present the as-deposited microstructure in a cross-section vertical to the plasma
scanning direction. The weld metal deposit grains change from having a relatively fine
microstructure and a small grain size near the substrate to a very coarse microstructure
with a large grain size as the distance from the substrate increases.
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Figure 16. Microstructure of (1) Position 1, (2) Position 2, (3) Position 3, (4) Position 4, (5) Position 5,
and (6) Position 6 of the hot-wire plasma welding test.

We used 3D measuring laser microscope OLS4100 (Olympus) analysis to evaluate the
microstructure of hot-wire plasma deposited titanium alloy grade 2. To study the phase
transformations of titanium alloy grade 2 during hot-wire plasma metal deposition, we
transversely cut the sample, polished them with silica suspension, and examined them
with an optical and 3D measuring laser microscope.

Titanium alloy has a two-phase (α + β) microstructure. Titanium undergoes α to β

phase transformation. In Position 1, the microstructure becomes relatively fine with a small
grain size. In Figure 16 (Positions 1–6), the darker regions are the β phase, which remains
between the α plates that have developed. The microstructure consists of parallel plates
of α characterized by the β phase between them. The microstructure of the substrate was
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characterized by alpha (lighter part) and beta grains (darker parts). Figure 16 (Positions
4–6) also shows the microstructure in different areas of the top surface of the sample. As can
be seen the microstructure varies in different areas. Some areas (Positions 4 and 5) contain
mainly primary α grains surrounded by a coarse β phase. The primary α forms through
nucleation and growth during the α + β working operation, and its morphology can
vary from elongated plates in lightly worked material to equiaxed globular morphology
in heavily worked material. The microstructure once again becomes very coarse with
a relatively large grain size near the top region of the weld metal deposit and becomes
relatively uneven, and expansion of the dendrite is found.

4. Discussion
4.1. Porosity Analysis

The pore or cave pocket is a characteristic feature of welding and occurs frequently
during the welding process. Gas comes out of solution in the form of bubbles since the
solubility for gas decreases in a liquid metal upon cooling [41]. Porosity will be increased
because the dendritic solidification interface and some inclusions can be used as hetero-
geneous particles for pores. Pores serve as stress risers that are brittle fractures and that
increase the susceptibility to failure [39]. Several studies have shown that advanced tools
can help detect faults or other defects that occur in the welding process such as ultrasonic
non-destructive testing (NDT) techniques [30], X-ray CT methods [35,42], and radiographic
testing (RT) [43,44]. The slow welding speeds and the welding in the flat position, or uphill
in the vertical position, encourage the escape of pores [45]. The variation in the arc length
and the arc distance was large enough to affect the shielding gas (Argon), and porosity
started to show in some layers.

4.2. Vickers Microhardness

The decrease in hardness with increasing deposit height is a direct result of the
observed increase in dendritic structures with increasing deposit height. The mechanisms
differ between the α-phase and β-phase [46]. During the deposition, the melted area can
be hardened by a solid solution (contamination from the atmosphere or base material),
dislocation, or boundary hardening (a smaller grain or α-colony size, phase transformation,
or a high dislocation density [47]). A hardness gradient at deposits is generally expected, as
each layer has a different thermal history. The hardness difference between the top region
and bottom region is not equal in height. The hardness of the top layers (Position 1) is below
more than other layers. In addition, the total heat induced is larger and homogeneously
distributed through the specimen. This leads to a heterogeneous material and finally to a
slight decrease in hardness from top to bottom. Therefore, the only three measurements
(very few) are strongly dependent on the amount of α- and β-phase at the particular
location.

4.3. Tensile Strength

The location used to measure the longitudinal tensile strength, the transverse tensile
strength, and the baseplate of hot-wire PAW for AM deposited titanium alloy grade 2 are
presented in Figure 6. The transverse direction refers to samples taken across the layers of
the building, while the longitudinal direction refers to those taken along the layers [48].
Figure 13 shows the tensile properties of the specimens deposited by the hot-wire method,
which combines plasma welding. Specimens for the tensile test were machined from the
bottom to the top of the deposited sample. The test results showed a tensile strength of
approximately 426.42–578.86 MPa. The tensile strength steadily declined from the bottom
to the top part of the deposited sample. The results reveal that the percentage elongations
of all specimens remained almost constant (14.46%). Compared with the longitudinal
direction, the structural solidarity of parts in the transverse direction was worse due to the
HAZ of the adjacent deposited tracks acting on each other. The voids (porosity or crack)
were the main cause of the bad tensile strength in tensile specimens. Moreover, the nearby,
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inadequately fused areas were torn away, and the cracks then extended. At the same time,
voids reduced the effective sectional areas of tensile specimens, and the tensile strength
was worse [45]. The coating was able to increase the tensile strength of the test part
surface, which was mentioned in [49]. Therefore, the tensile strength and elongation in the
longitudinal direction were higher than those in the transverse direction.

4.4. Microstructure

The analysis of the deposited microstructure showed a number of features. The stag-
gered individual deposited tracks could be observed at low magnification. The formation
of the microstructure and the phase of titanium alloy occur as a result of melting at 1900 ◦C
and subsequent rapid cooling [50]. Figure 16 presents the as-deposited microstructure in
the transverse section of the baseline at deposit heights. Regarding the microstructure
of the specimen near the surface, the light-colored regions of the microstructure are the
alpha grain, and the dark regions are the beta grain. It was observed that the prior β-grains
and α-grains have a globular shape at the bottom, i.e., near the base and the substrate.
In addition, with increasing height, the microstructure of the specimen near the top re-
gion had many large dendritic structures, and the number of grains decreased. The heat
input led to the growth of these grains in the build. The microstructure of the titanium
alloy deposited alloy depends on the time at the temperature, the peak temperature, and
the cooling rate of each layer of deposited material during the multiple thermal cycles.
As regards the microstructure of titanium-based deposits [51], the needle-like dendritic
microstructure of alpha-phase titanium was found to develop from bead formation, along
with rapid cooling of the melt. According to [46], the main microstructural features of the
welding process are, in addition to the β and α grain size, the conditions under which the
high-temperature β and α phases transform during cooling. During the plasma welding,
the heat flow direction of the solidification of the molten pool was about perpendicular to
the surface of the substrate or the pre-deposited layers. The plasma transfer arc-assisted
deposition technology can be also used to directly manufacture a real component [52].
In [53], it was found that the microstructure of the sample was mostly a fine columnar
dendritic structure and that grew epitaxially along the deposition direction. The growth
rate, temperature gradient, melt pool shape, welding speed, and the alloy constitution will
all control the final microstructure of a solidifying melt pool in AM [50].

5. Conclusions

The following conclusions can be drawn based on the analytical and experimental
investigations.

1. The variations in welding speed and wire feeding speed that resulted from the
in-consistent angular velocity led to inconsistent overall deposit geometry. To de-
velop reliable hot-wire PAW process parameters, an accurate welding speed, and
wire feeding speed must be determined for consistent weld metal deposit build-up.
Nevertheless, a moving speed of the welding that is too great, could cause hump-
ing. The appropriate hot-wire plasma welding parameters are a welding speed of
1.83 mm/s and an arc current of 120 A. A hot-wire current (amperage) of 35 A, a wire
feeding speed of 0.85 m/min, and a reverse feeding speed of 5 m/min (0.99 s) gave
the appropriate hot-wire temperature in the weld pool range. In a single run, wall
widths were approximately 7–13.25 mm after welding.

2. The Vickers microhardness of as-deposited samples was in the range of 180.05–210.00
HV and the tensile strength was 426.42–578.86 MPa depending on the orientation and
location of the specimens. The microstructure evolution, tensile strength, and yield
strength decreased gradually from the bottom to the top part of the deposited sample
because of the observed increase in grain size with increasing deposit height. The per-
centage elongations of all specimens were at an average of 14.67%. This indicates that
the as-deposited sample exhibits improved mechanical properties for the hot-wire
PAW welding process.
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3. The microstructure of the specimen near the bottom region (or substrate) consists of
alpha (lighter part) and beta grains (darker parts). Cross-sections of the weld metal
specimens showed an overall increase and a large size in the dendritic structure (top
region of the part). The dendrite spread out until all solid metals and then stopped
growing. This caused the alloy to enter into a non-equilibrium condition because
the hot metal alloy cooled instantly or too quickly and suddenly solidified, whereas
the inside remained hot and soft. Furthermore, the coarsening microstructure, as the
height of the weld metal specimen increased, grew epitaxially along the deposition
direction. However, there was not little effect found on the strength. Each crystal was
often unequal because the growth of each dendrite was independent.

4. The titanium alloy is highly susceptible to oxidation during welding. Oxidation and
distortion can cause problems in particular when the deposition takes place outside
of the chamber. During the manufacture of the first weld, a metal specimen found
oxidation was observed.

5. Further experiments are necessary to optimize technical parameters for a suitable
deposition condition and improve the quality of the hot-wire PAW process.
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