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Abstract: Jasmine rice (Oryza sativa L.), or Khao Dawk Mali 105 (KDML105), is sensitive to drought
and salt stresses. In this study, two improved drought-tolerant chromosome segment substitution lines
(CSSLs) of KDML105 (CSSL8-103 and CSSL8-106), which carry drought tolerance quantitative trait loci
(QTLs) on chromosome 8, were evaluated for salt tolerance and were compared with KDML105 and the
QTL donor DH103, their parents and the salt-tolerant genotype Pokkali. After being subjected to salt
stress for 6 days, 3-week-old seedlings of Pokkali showed the highest salt tolerance. Parameters related to
photosynthesis were less inhibited in both CSSLs and the donor DH103, while these parameters were more
severely damaged in the recurrent parent KDML105. Albeit a high ratio of Na+/K+, CSSLs and DH103
showed similar or higher contents of soluble sugar and activity of superoxide dismutase (SOD; EC1.15.1.1)
compared with Pokkali, indicating possible mechanisms of either tissue or osmotic tolerance in these
plants. The expression of a putative gene Os08g41990 (aminotransferase), which is located in DT-QTL
and is involved in chlorophyll biosynthesis, significantly decreased under salt stress in KDML105 and
CSSL8-103, while no obvious change in the expression of this gene was observed in Pokkali, DH103
and CSSL8-106. This gene might play a role in maintaining chlorophyll content under stress conditions.
Taken together, the results of this study indicate that DT-QTL could contribute to the enhancement of
photosynthetic performance in CSSL lines, leading to changes in their physiological ability to tolerate
salinity stress.

Keywords: chlorophyll; chromosome segments substitution lines; drought tolerance quantitative
trait loci (QTL); photosynthesis; salt stress; rice

1. Introduction

Climate change and environmental problems, such as drought, high or low temperatures and
soil salinity, cause low yields of crops, including rice, in arid and semiarid regions around the world.
In Thailand, many parts of the country face drought problems which notably limit crop productivity.
However, in the northeastern part of the country, drought is not the only restricting abiotic stress factor,
as soil salinity is also an issue affecting crop production. Salt-affected areas in the northeast are formed
through geochemical and anthropogenic processes and cover an area of 1.84 million ha, accounting for
18% of the agricultural land in this region [1].
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As one of the top rice-exporting countries, rice is considered an important crop to Thailand’s
economy, especially Khao Dawk Mali 105 (KDML105), or jasmine rice, which is well-known on the global
market for its excellent appearance, texture and aroma. KDML105 is grown primarily in the northeast,
where inland salt-affected soils reduce its productivity. Low production of KDML105 is observed when
it is grown in soil with electrical conductivity (EC) of 8–16 dS m−1 [2]. To increase the productivity
of the elite rice KDML105 in drought-prone and salt-affected areas, developing new stress-tolerant
cultivars with a highly conserved genetic background of KDML105 represents an alternative strategy
for sustainable agriculture. In a previous study, KDML105 (drought- and salt-sensitive) was used
as a genetic background crossed with a drought-tolerant donor, the IR68586-F2-CA-31 line (DH103),
by marker-assisted backcrossing to develop chromosome segment substitution lines (CSSLs) of KDML105
containing various segments of drought tolerance quantitative trait loci (DT-QTL) on chromosome 8.
This CSSL population has been reported to show better drought tolerance than KDML105 [3].

The salt concentration in the water extracted from a saturated soil extract defines the salinity of
the soil. Elevated salt concentrations in soil affect plant growth and metabolism, leading to reduced
plant productivity or severe symptoms and death. Salt stress arises from the combination of osmotic
and ion toxicity effects and oxidative stress. Salts in the soil water not only interfere with water uptake,
resulting in slower growth, but also inhibit K+ uptake, leading to ion imbalance in plant cells [4].
Plants cope with negative effects from salt stress through many processes, such as faster activated
signalling networks, selective exclusion of Na+, control of ion uptake and synthesis of compatible
solutes for osmotic adjustment [5]. Plants are able to counteract osmotic stress by osmotic adjustment
through the accumulation of organic solutes or compatible solutes (e.g., trehalose, glycerol, proline,
glycine betaine, sucrose and glucose) [6]. Many studies have documented that plants accumulate many
compatible solutes under water deficit, as well as under osmotic and salt stresses. For example, it has
been reported that glycine betaine and proline are the main solutes, followed by sugars and free amino
acids, that are involved in osmotic adjustment attributed to salt tolerance [7].

Salt stress induces reactive oxygen species (ROS) generation from a molecule of oxygen that receives
electrons from a high energy level. An imbalance between ROS production and the scavenging defence
system (enzymes and nonenzymatic molecules) results in oxidative stress [8]. The main sites for ROS
production include chloroplasts, mitochondria and peroxisomes, which are highly oxidizing, metabolically
active organelles [9]. ROS, such as hydrogen peroxide (H2O2), superoxide anion (O2

•−) and singlet oxygen
(1O2), damage essential macromolecules and plant metabolites. Several nonenzymatic antioxidants
(glutathione and ascorbate) and antioxidant enzymes (superoxide dismutase, SOD or EC1.15.1.1,
and catalase, CAT or EC1.11.1.6) are able to detoxify ROS [10]. Higher activity of antioxidant enzymes
under NaCl treatments was observed in salt-tolerant rice genotypes than in salt-sensitive rice genotypes,
resulting in better defence against the negative effects of salt stress [11]. This phenomenon is also observed
in other plant species, such as wild barley and pepper, when they are exposed to abiotic stress [12,13].

Chlorophyll is usually degraded under salinity stress. Thus, this pigment has been used as one
of the key criteria in evaluating the salt tolerance ability of many plant species [13–15]. Recently,
our previous bioinformatics analysis found that a putative gene, Os08g41990, which is involved in
chlorophyll biosynthesis (tetrapyrrole and porphyrin biosynthesis) and is located on the introgressed
DT-QTL of some CSSL lines of KDML105, might have some significant functions in salt stress tolerance
in rice [16]. Moreover, salt stress reduces CO2 fixation as a result of the decreased CO2 diffusion
caused by stomatal closure [17]. Under this condition, electron flow continues, and excitation energy
can be generated, leading to ROS production [9]. A comparison of photosynthesis intercellular CO2

concentration response (A/Ci) curves between salt-tolerant and salt-susceptible rice cultivars under salt
stress revealed that the reduction in both carboxylation efficiency and the maximum photosynthetic
CO2 fixation rate was more pronounced in the salt-susceptible cultivar than in the salt-tolerant
cultivar [18]. Protecting photosynthesis components is also one of several essential mechanisms for
drought tolerance [19]. Drought-tolerant genotypes often show higher levels of photosynthesis than
do susceptible ones, which consequently leads to higher yield [20].
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The mechanisms of drought and salt stress tolerance in plants are related and have overlapping
signals [21]. The drought-tolerant introgressed CSSL lines developed by Kanjoo et al. [3] are suitable
for research investigating the physiological responses to salt stress. The aim of this work was to
investigate the physiological parameters and tolerance mechanisms in selected CSSL lines under salt
stress and recovery. To address this objective, two CSSLs were evaluated for salt tolerance ability
compared with their parental lines and standard salt tolerant genotype including an analysis of the
expression of putative genes found in DT-QTL of CSSL lines, Os08g41990.

2. Materials and Methods

2.1. Plant Materials and Stress Treatment

CSSLs of KDML105, which are DT-QTL introgression lines designated CSSL8-103 and CSSL8-106,
were used as plant materials (see Supplementary Figure S1 for the breeding scheme). CSSL8-103 and
CSSL8-106 were selected because both have chromosome 8 DT-QTL introgression, but the length of
the introgressed region was shorter in CSSL8-103 (Supplementary Figure S2). Their physiological
responses under salt stress and after recovery were compared with those of the standard salt tolerant
cultivar (Pokkali) and their parents (KDML105 and DH103). The experiment was performed in
a greenhouse at the Faculty of Agriculture, Khon Kaen University, Thailand, under natural sunlight
conditions. A randomized complete block design with 4 replications for each treatment was employed
for the experimental design. Sixteen rice seedlings of each line/cultivar were randomly arranged
in 10 × 8 holes (row × column) of Styrofoam with nylon net bottoms floating over 6 L of nutrient
solution in each container. All rice lines/cultivars were germinated in distilled water for 3–4 days
and were subsequently allowed to grow in nutrient solution [22]. The nutrient solution was renewed
every 4 days, and the pH was maintained at 5.0–5.5 throughout the experiment. At 3 weeks of age,
plants were divided into control (0 mM NaCl) and salt treatment (150 mM NaCl) groups. After 6 days of
salt treatment, plants were allowed to recover for 4 days by replacing the nutrient solutions containing
NaCl with fresh nutrient solutions. Fresh nutrient solution was also replaced in the control group.
Rice plants were harvested twice: 6 days after the stress-treatment period and 4 days after the recovery
period. The collected samples were stored at −80 ◦C and −20 ◦C for further analysis.

2.2. SPAD Measurement, Chlorophyll Content and Photosynthetic Parameters

Leaf greenness based on SPAD readings was determined on the youngest fully expanded leaf using
a SPAD-502 chlorophyll meter (Konica Minolta Inc., Osaka, Japan). Chlorophyll content was estimated
following the method described by Arnon [23]; 0.1 g leaf tissue was analysed. Photosynthetic parameters
(net photosynthesis rate, PN; stomatal conductance, gs; transpiration rate, E; ratio between internal and
ambient CO2 concentration, Ci/Ca) were measured on the youngest fully expanded leaves of the plants
using a portable gas exchange analyser (LI-6400-XT, LI-COR, NE, USA) from 9:30–12:30 a.m. The net
photosynthesis rate was determined under the conditions of a controlled leaf chamber temperature of
30 ◦C, CO2 concentration of 400 ppm and light intensity of 1500 µmol (photon) m−2 s−1. The maximum
quantum efficiency of photosystem II (Fv/Fm) was measured after 7.00 p.m. using LI-6400-XT.

2.3. Analysis of the Expression of Genes Related to Chlorophyll Synthesis

Based on our previous bioinformatics (co-expression network) analysis, it was revealed that
the DT-QTL segments introgressed into the CSSL8 population contained Os08g41990, a putative
gene that encodes aminotransferase, which may contribute to salt stress tolerance in this CSSL8 rice
population [16]. Thus, this study examined the expression level of this putative gene under salt stress.
In addition, since the co-expression network of Os08g41990 was related to the chlorophyll biosynthetic
pathway, three other chlorophyll biosynthetic genes, HEMA (glutamyl-tRNA reductase), GSA (glutamate
1-semialdehyde aminotransferase) and Os02g07230 (porphobilinogen deaminase), were also studied to
understand their roles under salt stress.
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Total RNA from 0.1 g leaves was isolated using the PureLink RNA Mini Kit (Thermo Fisher
Scientific, Waltham, MA, USA). DNase treatment using RQ1 RNase-Free DNase (Promega, Madison,
WI, USA) was performed to remove residual DNA. RNA was quantified by a UV–vis spectrophotometer
(NanoDrop, Thermo Fisher Scientific). First-strand cDNA was synthesized from 1 µg RNA with
a RevertAidTM First Strand cDNA Synthesis Kit (Fermentas, Vilnius, Lithuania) using 0.5 µg/µL
oligo (dT)18 primers. Gene expression was analysed by qPCR with a LightCycler® 480 instrument
(Roche). The 20-µL total reaction was analysed using a LightCycler® 480 SYBR Green I Master (Roche)
containing first-strand cDNA (1:10) as a template and 0.1 µM specific primers (Supplementary Figure
S3). Three biological replicates of each rice line/cultivar were performed under both control and stress
conditions. The relative expression level of each gene was analysed using the 2−∆∆CT CT method [24].
OsActin was used as an internal control.

2.4. Measurement of Osmotic Potential and Total Sugar

Young, fully expanded leaves of rice plants of each line/cultivar were collected and kept in
plastic bags, placed immediately in liquid nitrogen, and then stored at −20 ◦C for osmolality analysis.
Ten microlitres of the leaf sap was used to determine osmolality using an osmometer (Wescor Inc.,
Logan, UT, USA). Osmotic potential was calculated according to the method of Larkunthod et al. [25].
Total sugar was determined by the anthrone method using 0.1 g of leaf tissue [16].

2.5. Estimation of Electrolyte Leakage (EL), Malondialdehyde (MDA) and Hydrogen Peroxide (H2O2)

Electrolyte leakage (EL) was estimated following the method of Filek et al. [26]. Malondialdehyde
(MDA) was measured by using the method described by Heath and Packer [27]. The method of Meisner
and Gębicki [28] was used to measure hydrogen peroxide (H2O2).

2.6. Estimation of Electrolyte Leakage (EL), Malondialdehyde (MDA) and Hydrogen Peroxide (H2O2)

Crude enzyme was extracted from leaf samples (0.2 g) by homogenizing them with 10 mM of
potassium phosphate buffer (pH 7.0) containing 4% polyvinyl pyrrolidone (PVP). After being spun
at 4 ◦C for 15 min in a centrifuge, supernatants were immediately analysed to determine enzyme
activity. Superoxide dismutase (SOD) and catalase (CAT) activities were estimated by following the
method described previously by Nounjan and Theerakulpisut [29]. Protein content was measured by
the Bradford method [30].

2.7. Growth Parameters and Ion Concentration

Plants were randomly selected from the control and salt stress groups in each replicate to measure
dry weight (DW). DW was measured after the plants were incubated at 70 ◦C until the weight was
stabilized. Dried roots and leaves were used to determine Na and K ions as described previously [16].

2.8. Statistical Analysis

The data were analysed with SPSS ver. 20 for statistical testing. The significance of the differences
between the mean values was determined by Duncan’s multiple range tests (DMRT), considering
p ≤ 0.05 to be significant. All data are presented as means ± SE.

3. Results

3.1. SPAD Values, Chlorophyll Content, Gene Expression and Photosynthetic Parameters under Salt Stress and
Recovery Conditions

For SPAD values, Pokkali and CSSL8-106 showed no change in SPAD values under salt stress,
whereas SPAD values observed from DH103 increased when NaCl was applied (Figure 1A). However, this
increase between the control and salt treatment groups was not significant. Significant decreases in SPAD
values were found in KDML105 and CSSL8-103 (decreases of 8 and 3%, respectively, compared to those
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of the control groups). After salt stress was removed, the SPAD values of Pokkali showed a significant
decrease compared to those of other groups previously subjected to salt stress. For DH103 and CSSL8-103,
the SPAD values did not change, while an increase in SPAD values was recorded in KDML105 (7%)
and CSSL8-106 (5%) (Figure 1A). Salt stress induced a decline in total chlorophyll content in all rice
lines/cultivars. Strong and significant reductions in total chlorophyll were observed in KDML105 (31%)
and CSSL8-103 (30%), while slight but significant reductions were found in Pokkali (10%) and CSSL8-106
(11%). The 8% reduction found in DH103 was not significant (Figure 1B). After 4 days of recovery from
stress, no significant differences in total chlorophyll content were observed among DH103 plants and
both CSSL8 lines previously treated with NaCl. Notably, significant increases in chlorophyll content were
observed after recovery in Pokkali (17%) and KDML105 plants (29%) (Figure 1B).
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Figure 1. Photosynthetic pigments (A) SPAD values, (B) total chlorophyll content and chlorophyll
a:b ratio (C) of rice plants under control and salt stress for 6 days (light gray bars) and after recovery
for 4 days (black bars). C, control; S, salt stress. Pokkali, standard salt tolerant; DH103, drought
tolerance quantitative trait loci (DT-QTL) donor; KDML105, recurrent parent; CSSL8-103 and CSSL8-106,
improved lines. Values are means of four replications ± SE. Different letters indicate a significant
difference in the means of each group (p ≤ 0.05).

The chlorophyll a:b ratio was not significantly changed between non-stressed and salt-stressed
Pokkali, DH103 and CSSL8-106, while the chlorophyll a:b ratio was significantly decreased in KDML105
and CSSL8-103 when the plants were treated with NaCl (the ratio decreased by 12 and 17%, respectively).
After the recovery period, the chlorophyll a:b ratio in all plants was significantly increased compared to
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the salt-treated plants (the ratio increased by 16% in Pokkali, 9% in DH103, 26% in KDML105, 20% in
CSSL8-103 and 16% in CSSL8-106) (Figure 1C).

The transcription levels of genes involved in the chlorophyll biosynthetic process, namely,
HEMA, which encodes glutamyl-tRNA reductase (GTR; EC 1.2.1.70), GSA (glutamate 1-semialdehyde
aminotransferase; EC 5.4.3.8), Os08g41990 (aminotransferase) and Os02g07230 (porphobilinogen
deaminase; EC 4.3.1.8), were significantly down-regulated in response to salt stress. For Pokkali,
a dramatic decrease in HEMA expression was observed, whereas no significant change in GSA,
Os08g41990 and Os02g07230 expression levels was detected compared to untreated plants (Figure 2).
A slight down-regulation or unchanged expression in Os08g41990 was also observed in DH103 and
CSSL8-106 plants. Notably, those genes (Figure 2) were dramatically down-regulated in salt-stressed
KDML105 and CSSL8-103. After the plants were allowed to recover for 4 days, plants previously treated
with NaCl showed down-regulated expression levels of HEMA in Pokkali, KDML105 and CSSL8-106,
whereas a marked up-regulation of HEMA expression was observed in CSSL8-103. For DH103, HEMA
showed a slight up-regulation but was not significantly changed compared with the control plants
(Figure 2A). Similar results were observed in the recovered leaves of Pokkali, KDML105 and CSSL8-106,
which exhibited significant down-regulation of GSA expression levels while there was a relative
decrease in the expression of GSA in DH103. CSSL8-103 did not show any significant decrease in GSA
expression (Figure 2B). After recovery, the Os08g41990 expression level in Pokkali and KDML105 was
down-regulated, while that in CSSL8-103 was strongly up-regulated (Figure 2C). The expression of
Os02g07230 in the previously salt-treated plants was significantly increased in Pokkali and KDML105,
whereas down-regulation of this gene was observed in both CSSL lines. Os02g07230 gene expression
exhibited no noticeable change in DH103 (Figure 2D).
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Figure 2. Expression of genes involved in chlorophyll synthesis (A) HEMA, (B) GSA, (C) Os08g41990,
(D) Os02g07230 of rice plants under control and salt stress for 6 days (light gray bars) and after
recovery for 4 days (black bars). The histogram shows relative abundance of mRNA for each gene
and each treatment after normalization with OsActin. C, control; S, salt stress. For a description of the
genotypes, see Figure 1. The asterisk shown in each bar indicates statistically significant difference in
gene expression (p ≤ 0.05) between control and salt stress in each period. All relative expression of each
gene was normalized to the control condition in the same period.
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Under non-stress conditions, Pokkali and DH103 showed higher PN values (24.56 and
25.08 µmol(CO2) m−2 s−1, respectively) than other rice lines/cultivars, whereas the PN values in
KDML105 (20.12 µmol(CO2) m−2 s−1) and both CSSL lines (21.42 and 20.72 µmol(CO2) m−2 s−1 for
CSSL8-103 and CSSL8-106, respectively) were similar. When plants were exposed to NaCl for 6 days,
the PN values in all rice lines/cultivars decreased by approximately 50–54%, except for KDML105,
in which the PN values decreased 64% compared to those of the non-stressed groups (Figure 3A).
However, the PN values increased after salt had been removed. The highest increase in the PN values
after recovery was observed in KDML105 (68% increase compared to stressed-plants after 6 days of salt
treatment) followed by CSSL8-106 (58%), Pokkali (55%), CSSL8-103 (51%) and DH103 (47%) (Figure 3A).
When treated with NaCl for 6 days, the lowest gs value was found in KDML105 (0.066 mol (H2O) m−2 s−1

i.e., 84% reduction compared to those of the control group), while no significant differences were
observed in other rice lines/cultivars (Figure 3B). After 4 days of recovery, for the control plants,
the gs values of all lines/cultivars were significantly reduced. In contrast, the previously stressed plants
were able to exhibit increased gs values compared with the salt-stressed plants (increased by 62, 60,
65, 56 and 51% in Pokkali, DH103, KDML105, CSSL8-103 and CSSL8-106, respectively) (Figure 3B).
Salt stress also induced a decrease in E, and the level of E was severely decreased in KDML105 and
CSSL8-103 (72–73%), whereas a 54% reduction was observed in Pokkali. When the nutrient solution was
renewed after salt stress, E in KDML105 exhibited the highest percentage recovery (63%) (Figure 3C).Agriculture 2020, 10, x FOR PEER REVIEW 8 of 19 
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Lower Ci/Ca was noted in all lines/cultivars (except CSSL8-103) during NaCl treatment. During
this period, the lowest decrease in Ci/Ca was detected in CSSL8-103 (6%) followed by KDML105
(19%), and their Ci/Ca remained relatively high, exhibiting values of 0.73 for CSSL-8-103 and 0.61
for KDML105 (Figure 3D). After the salt-stressed plants were recovered in nutrient solution without
NaCl for 4 days, the Ci/Ca values of Pokkali, DH103 and CSSL8-106 were significantly increased by
15, 30 and 16%, respectively, compared with plants during the stress period. In contrast, the Ci/Ca of
recovered plants of KDML105 and CSSL8-103 decreased further (Figure 3D). As shown in Figure 3E,
a reduction in the Fv/Fm was detected in salt-stressed DH103 plants and both CSSL8 lines, while no
change was observed in Pokkali and KDML105. When stressed plants were allowed to recover,
Fv/Fm was significantly increased in DH103 and two CSSL8 lines compared with the values observed
during stress.

3.2. Osmotic Potential and Sugar Content under Salt Stress and Recovery

Plants under non-stressed conditions had osmotic potential values ranging from −1.37 MPa
(DH103) to −1.73 MPa (CSSL8-106). In response to 6 days of salt stress, the osmotic potential decreased
significantly in all rice lines/cultivars (Figure 4A), with values ranging from −2.51 MPa (Pokkali)
to −3.53 MPa (KDML105). The highest percentage reduction in osmotic potential was found in
DH103 (58%) followed by KDML105 (50%), CSSL8-103 (47%), CSSL8-106 (43%) and Pokkali (32%).
After recovery, the osmotic potential of all stressed rice lines/cultivars dramatically increased to levels
comparable to those of the control groups. The highest percent increase was found in DH103 and
CSSL8-103 (48 and 50%, respectively) (Figure 4A).Agriculture 2020, 10, x FOR PEER REVIEW 9 of 19 
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Sugar contents in control plants varied considerably, ranging from 246 (Pokkali) to 145 (KDML105)
mg g−1 FW. Nevertheless, a significant enhancement in sugar content was found in all lines/cultivars
after 6 days of salt-stress treatment (Figure 4B). DH103 and CSSL8-106 showed the highest increases
(33 and 38%, respectively), whereas 14–17% increases were found in Pokkali, KDML105 and CSSL8-103.
After 4 days of recovery from stress, the means of sugar content were decreased in both the control and
stress groups. In this stage, the sugar contents of the Pokkali, DH103 and KDML1050 plants were not
significantly different from those of their respective control plants, which had not experienced salt
stress. In contrast, the sugar contents of both CSSL8 lines recovered from salt stress were lower than
those of their corresponding control plants (Figure 4B).

3.3. Oxidative Stress Indicators and Antioxidant Enzyme Activities under Salt Stress and Recovery

Electrolyte leakage (EL) in the control plants was low, ranging from 1.71 to 4.72%, indicating good
membrane integrity. When exposed to salt stress, EL increased markedly in all rice lines/cultivars.
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The highest EL was observed in KDML105 (27%) followed by CSSL8-103 (21.5%), which was in contrast
to Pokkali, whose EL was the lowest (12%) (Figure 5A). After recovery, the adverse effect of salt was
reduced, as demonstrated by the significant reduction in EL in all plants. However, for plants that
had previously experienced salt stress, EL values were still higher than those of their corresponding
controls (except for KDML105) (Figure 5A). Significant differences in malondialdehyde (MDA) levels
between the control and salt treatment groups were observed in only KDML105 (18% increase),
whereas no significant changes were observed in Pokkali, DH103 and both CSSL8 lines. After 4 days of
recovery, MDA contents were similar to those under 6 days of salt stress (except for DH103) (Figure 5B).
For hydrogen peroxide (H2O2), H2O2 content significantly increased with salt treatment in KDML105
and CSSL8-106 (17 and 22%, respectively, compared to those of the control plants). After salt stress
was removed, H2O2 content considerably decreased, reaching similar levels (in DH103, KDML105 and
CSSL8-103) as in the control plants, which had not experienced salt stress. However, Pokkali plants
that were previously stressed and later recovered had lower H2O2 (13% decrease) than did the control
plants, while the opposite case was observed in CSSL8-106 (26% increase) (Figure 5C).Agriculture 2020, 10, x FOR PEER REVIEW 10 of 19 
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replications ± SE. Different letters indicate a significant difference in the means of each group (p ≤ 0.05).
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Superoxide dismutase (SOD) activity was not affected by salt stress in Pokkali, DH103 and
CSSL8-103, while significantly reduced activity was observed in KDML105 (23%) and CSSL8-106 (10%)
(Figure 6A). After 4 days of recovery, SOD activity considerably increased by 34, 23, 41, 26 and 23% in
Pokkali, DH103, KDM105, CSSL8-103 and CSSL8-106, respectively, compared to the levels observed
during the stress period (Figure 6A). The SOD activity of the recovered plants was at similar levels to
(DH103, KDML105, CSSL8-103 and CSSL-8-106) or higher than (Pokkali) those of the control plants
that never experienced salt stress. Conversely, salt stress significantly increased catalase (CAT) activity
in all rice lines/cultivars, except for CSSL8-106, which did not show noticeable changes. The highest
increase was noted in Pokkali followed by DH103, KDML105 and CSSL8-103 (increased by 66, 48,
32 and 25%, respectively) (Figure 6B). After 4 days of recovery, significantly lower CAT activity was
observed in Pokkali (36% reduction) and DH103 (34% reduction), while that of KDML105, CSSL8-103
and CSSL8-106 continued to increase or remained unchanged. The CAT activities in the recovered
plants of Pokkali and both CSSLs were similar to those of the plants that had not experienced salt stress.
In contrast, the CAT activities of DH103 and KDML105 plants recovered from stress were significantly
lower than those of the control plants (Figure 6B).

Agriculture 2020, 10, x FOR PEER REVIEW 10 of 19 

 

 

Figure 5. (A) Electrolyte leakage, (B) Malondialdehyde (MDA) content and (C) H2O2 content of rice 
plants under control and salt stress for 6 days (light gray bars) and after recovery for 4 days (black bars). 
C, control; S, salt stress. For description of genotypes, see Figure 1. Values are means of four replications 
± SE. Different letters indicate a significant difference in the means of each group (p ≤ 0.05). 

 
Figure 6. Antioxidant enzyme activities (A) Superoxide dismutase (SOD) and (B) Catalase (CAT) of rice 
plants under control and salt stress for 6 days (light gray bars) and after recovery for 4 days (black bars). 
C, control; S, salt stress. For a description of the genotypes, see Figure 1. Values are means of four 
replications ± SE. Different letters indicate a significant difference in the means of each group (p ≤ 0.05). 

3.4. Na+/K+ Ratio and Growth of Plants under Salt Stress 

Under the control non-stressed conditions, no significant difference in the Na+/K+ ratio was 
observed in the roots and leaves in all rice lines/cultivars. When salt was applied, there was a significant 

Figure 6. Antioxidant enzyme activities (A) Superoxide dismutase (SOD) and (B) Catalase (CAT) of
rice plants under control and salt stress for 6 days (light gray bars) and after recovery for 4 days (black
bars). C, control; S, salt stress. For a description of the genotypes, see Figure 1. Values are means of four
replications ± SE. Different letters indicate a significant difference in the means of each group (p ≤ 0.05).

3.4. Na+/K+ Ratio and Growth of Plants under Salt Stress

Under the control non-stressed conditions, no significant difference in the Na+/K+ ratio was
observed in the roots and leaves in all rice lines/cultivars. When salt was applied, there was a significant
increase in the Na+/K+ ratio (29–95-fold increase compared to that of the control) (Figure 7). DH103
showed the highest Na+/K+ ratio in both root and leaf tissues. In contrast, the lowest Na+/K+ ratios
were found in Pokkali. In two CSSL8 lines, CSSL8-103 had a higher Na+/K+ ratio in roots than did
CSSL8-106, while no significant differences in the Na+/K+ ratios in the leaves were observed between
them. For KDML105, the Na+/K+ ratios in the roots and leaves increased 59-, and 81-fold, respectively,
compared to those observed in the control groups (Figure 7). Although similar root Na+/K+ ratios
among Pokkali, KDML105 and CSSL8-106 were observed, KDML105 and CSSL8-106 accumulated
higher Na ions in roots than did Pokkali (Supplementary Figure S4).

After the recovery period, significantly lower root Na+/K+ ratio was observed in Pokkali (64%
reduction), KDML105 (44% reduction) and CSSL8-106 (35% reduction), while that of DH103 and
CSSL8-103 remained unchanged. In the leaves, Na+/K+ ratios in the recovered plants of Pokkali and
DH103 remained the same as in the salt-stressed plants. For KDML105 and CSSL8-106, leaf Na+/K+

ratios significantly decreased (decrease of 24% and 42%, respectively), whereas a marked increase in
Na+/K+ was noted in CSSL8-103 (increase of 57%) (Figure 7).
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Figure 7. Na+/K+ ratio in (A) roots and (B) leaves of rice plants under control and salt stress for 6 days
(light gray bars) and after recovery for 4 days (black bars). C, control; S, salt stress. For a description
of the genotypes, see Figure 1. Values are means of four replications ± SE. Different letters indicate
a significant difference in the means of each group (p ≤ 0.05).

Growth reduction was observed in all rice lines/cultivars after exposure to NaCl. Compared with
the controls, dry weight (DW) under salt stress was decreased by 46, 45, 44, 35 and 26% in KDML105,
CSSL8-103, Pokkali, CSSL8-106 and DH103, respectively. However, plants were able to recover growth
after the salt stress was removed. Compared with the DW observed after 6 days of salt stress, the DW
of DH103 showed the highest percentage recovery (79%) followed by KDML105 (77%), Pokkali (56%),
CSSL8-106 (47%) and CSSL8-103 (26%) (Figure 8).

Agriculture 2020, 10, x FOR PEER REVIEW 11 of 19 

 

increase in the Na+/K+ ratio (29–95-fold increase compared to that of the control) (Figure 7). DH103 
showed the highest Na+/K+ ratio in both root and leaf tissues. In contrast, the lowest Na+/K+ ratios 
were found in Pokkali. In two CSSL8 lines, CSSL8-103 had a higher Na+/K+ ratio in roots than did 
CSSL8-106, while no significant differences in the Na+/K+ ratios in the leaves were observed between 
them. For KDML105, the Na+/K+ ratios in the roots and leaves increased 59-, and 81-fold, respectively, 
compared to those observed in the control groups (Figure 7). Although similar root Na+/K+ ratios 
among Pokkali, KDML105 and CSSL8-106 were observed, KDML105 and CSSL8-106 accumulated 
higher Na ions in roots than did Pokkali (Supplementary Figure S4). 

After the recovery period, significantly lower root Na+/K+ ratio was observed in Pokkali (64% 
reduction), KDML105 (44% reduction) and CSSL8-106 (35% reduction), while that of DH103 and 
CSSL8-103 remained unchanged. In the leaves, Na+/K+ ratios in the recovered plants of Pokkali and 
DH103 remained the same as in the salt-stressed plants. For KDML105 and CSSL8-106, leaf Na+/K+ 
ratios significantly decreased (decrease of 24% and 42%, respectively), whereas a marked increase in 
Na+/K+ was noted in CSSL8-103 (increase of 57%) (Figure 7). 

 

Figure 7. Na+/K+ ratio in (A) roots and (B) leaves of rice plants under control and salt stress for 6 days 
(light gray bars) and after recovery for 4 days (black bars). C, control; S, salt stress. For a description 
of the genotypes, see Figure 1. Values are means of four replications ± SE. Different letters indicate a 
significant difference in the means of each group (p ≤ 0.05). 

Growth reduction was observed in all rice lines/cultivars after exposure to NaCl. Compared with 
the controls, dry weight (DW) under salt stress was decreased by 46, 45, 44, 35 and 26% in KDML105, 
CSSL8-103, Pokkali, CSSL8-106 and DH103, respectively. However, plants were able to recover 
growth after the salt stress was removed. Compared with the DW observed after 6 days of salt stress, 
the DW of DH103 showed the highest percentage recovery (79%) followed by KDML105 (77%), 
Pokkali (56%), CSSL8-106 (47%) and CSSL8-103 (26%) (Figure 8). 

 
Figure 8. Dry weight (DW) of rice plants under control and salt stress for 6 days (light gray bars) and 
after recovery for 4 days (black bars). C, control; S, salt stress. For a description of the genotypes, see 

Figure 8. Dry weight (DW) of rice plants under control and salt stress for 6 days (light gray bars) and
after recovery for 4 days (black bars). C, control; S, salt stress. For a description of the genotypes,
see Figure 1. Values are means of four replications ± SE. Different letters indicate a significant difference
in the means of each group (p ≤ 0.05).

4. Discussion

High levels of salinity activate chlorophyll degradation enzymes leading to a decline in chlorophyll
content [31]. A reduction of chlorophyll via SPAD values occurred in KDML105 and CSSL8-103 plants
treated with salt, whereas no significant change was observed in Pokkali, DH103 and CSSL8-106
(Figure 1A). This observation was generally consistent with the findings of many previous reports,
which indicated that salt stress decreased SPAD values in plants [15,32]. For extracted leaf pigments,
a significant decrease in total chlorophyll content was observed in all rice lines/cultivars. However,
the greatest reduction was noted in KDML105 and CSSL8-103. Notably, a decrease in the chlorophyll
a:b ratio is associated with a decrease in SPAD values and total chlorophyll, particularly in KDML105
and CSSL8-103 under salt stress (Figure 1B,C). Salt stress disintegrates the stacking of thylakoids,
which reduces the chlorophyll a:b ratio [33]; this may be a reason behind the reduction in the chlorophyll
a:b ratio in our study.
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For gene expression analysis, the results indicated that the expression levels of HEMA in all rice
lines/cultivars decreased under salt stress conditions, and down-regulation of this gene might also
be related to the reduction in chlorophyll content (Figures 1B and 2A). Under salt stress, no obvious
change or a slight decrease in the expression of GSA, Os08g41990 and Os02g07230 was observed in
Pokkali, DH103 and CSSL8-106, whereas more pronounced down-regulation occurred in KDML105 and
CSSL8-103 (Figure 2B–D). The GSA gene encodes an aminotransferase enzyme that converts glutamate
1-semialdehyde (GSA) to δ-amino levulinic acid (ALA) [34]. Os08g41990 functions in tetrapyrrole
and porphyrin biosynthesis, a crucial step in the chlorophyll synthesis process [16], and Os02g07230
(porphobilinogen deaminase) is involved in polymerizing molecules of porphobilinogen to produce
a linear tetrapyrrole, 1-hydroxymethylbillane [35]. The decreased expression of GSA, Os08g41990 and
Os02g07230 in KDML105 and CSSL8-103 compared with Pokkali, DH103 and CSSL8-106 suggests that
these genotypes are more sensitive to salinity stress than are other studied genotypes. The study of
Dalal and Tripathy [34] reported that reduced chlorophyll synthesis in stressed seedlings of rice was
associated with the down-regulation of early intermediates of chlorophyll biosynthesis, i.e., GSA and
ALA. Changes in levels of Os08g41990 expression were related to changes in chlorophyll content,
which was slightly reduced in PK, DH103 and CSSL8-106, but significantly decreased in KDML105 and
CSSL8-103 (Figures 1B and 2C). It has been reported that tetrapyrrole is also involved in stimulating
drought stress signalling and activating the ROS detoxification process under drought stress [36],
and sustainability of porphyrin biosynthesis during drought stress is a prerequisite for plants to
maintain photosynthesis [37]. Therefore, from these findings it could be implied that a higher
expression of Os08g41990 is associated with salt stress tolerance. The stability of this gene under salt
stress might relate to chlorophyll retention resulting in the maintenance of photosynthesis performance
(Figures 1–3). Moreover, the gene Os02g07230 can control the synthesis of photosynthetic pigment
under stress conditions [38]. These findings suggest that the regulation of chlorophyll synthesis is
important to confer salt tolerance on rice plants. After 4 days of recovery, the transcript levels of HEMA,
GSA and Os08g41990 in previously salt-stressed plants were, in most cases, lower than those of control
plants that were not subjected to stress (Figure 2). These lower gene expression levels were related to
significantly lower total chlorophyll contents (Figure 1B), particularly in DH103, KDML105, CSSL8-103
and CSSL8-106. An exception was found in CSSL8-103, where transcripts of HEMA and Os08g41990
in the recovered salt-stressed plants were notably higher than those of the control plants at the same
period (Figure 2A,C). However, the high expression in CSSL8-103 of these two genes, which encode the
enzymes of earlier steps in the chlorophyll biosynthesis pathway, was not related to chlorophyll content,
possibly due to the considerably lower expression of Os02g07230 (Figure 2D), which catalysed the first
committed step in porphyrin biosynthesis [35]. It was reported that chlorophyll biosynthetic genes
were down-regulated, while chlorophyll breakdown genes were up-regulated, during stress, and the
reverse situation was observed during the recovery period [39,40]. Chlorophyll content resulted from
complex functions of both genes (chlorophyll biosynthesis and degradation genes), and fluxes of
pathway intermediates [34]. Thus, mechanisms regulating chlorophyll metabolic pathways during salt
stress and after recovery warrant further study.

Photosynthesis is among the primary metabolic processes affected by salinity [41], and the salt
tolerance level is highly correlated with the ability to maintain PN under stress [16,42]. In this study,
it was evident that photosynthesis of KDML105 was most severely inhibited, and both CSSLs had
significantly higher PN values and lower percent reduction (Figure 3A). In all genotypes investigated,
reduced PN was closely associated with a reduction in gs (Figure 3A,B), suggesting that PN was
primarily limited by stomatal closure (stomatal factors), thus restricting CO2 supply to the Calvin
cycle. In addition, PN under salt stress is also limited by non-stomatal factors, which are indicated
by intercellular CO2 concentration (Ci) or the ratio between Ci/Ca in relation to gs [43]. Higher Ci/Ca
values in KDML105 and CSSL8-103 under stress, compared to the other genotypes, indicated that
photosynthesis of these genotypes suffered from stronger non-stomatal limitations [42]. Non-stomatal
limitation factors can slow photosynthesis under salt stress by reducing mesophyll conductance [44]



Agriculture 2020, 10, 620 13 of 18

and altering ATP production, leading to a shortage in supply of ribulose bisphosphate (RuBP) [45]
and reduced activities of the key enzymes of CO2 fixation [46]. It was obvious that Fv/Fm was
decreased in DH103 and both CSSL lines, whereas Fv/Fm was unaffected when plants were exposed to
NaCl in Pokkali and KDML105 (Figure 3E). This result indicates that salt stress did not threaten the
PSII photochemical apparatus in Pokkali and KDML105. In the recovery period, all photosynthetic
parameters in previously salt-treated groups were higher than those of stressed plants. At this time
point, Pokkali still showed the highest value in PN. Interestingly, the highest recovery percentage
was found in KDML105. It has been reported that the rapid recovery of the photosynthetic rate is
related to the stability of PSII and PSI [47]. In this study, salt-stressed Pokkali and KDML105 were
able to maintain their Fv/Fm values, suggesting that no irreversible damage to the PSII apparatus
occurred during salt stress. These findings may imply that the durability of PSII might play a vital
role in enhancing the photosynthesis process after recovery from stress. Chlorophylls are essential
pigments for photosynthesis and energy absorption. These factors could promote photosynthesis
leading to the enhanced growth of plants after recovery (Figures 1, 3 and 8).

In plant cells, maintaining low osmotic potential caused by a high accumulation of osmolytes,
compatible solutes and non-compatible solutes is a process of osmoregulation or osmotic adjustment
that is important for the protection and survival of plants under abiotic stress conditions [6,48]. In the
present study, plants exhibited low osmotic potential under salt treatment. The lowest osmotic
potential was found in the recurrent parent KDML105, while the salt-tolerant Pokkali had the highest
osmotic potential. The osmotic potential values of DH103 and both CSSLs were intermediate between
those cultivars (Figure 4A). Since Pokkali, which is the salt-tolerant genotype, exhibited high osmotic
potential in contrast to the salt-susceptible genotype KDML105, it is probable that osmoregulation or
osmotic adjustment is not the main mechanism contributing to salt tolerance in Pokkali. Although the
highest sugar content was observed in Pokkali receiving salt treatment, high osmotic potential was
observed in this cultivar. In contrast, KDML105 exhibited low sugar accumulated under salt stress,
but this cultivar had low osmotic potential (Figure 4B). High sugar accumulation in plants in response
to salt stress has generally been reported in salt-resistant genotypes in many plant species [7,49].
However, it has also been reported that sugar metabolites do not correlate with the maintenance of
osmotic potential in plants under salt stress conditions [50]. After salt stress was removed, osmotic
potential was increased and sugar content was decreased in all rice lines/cultivars, suggesting that
plants could recover to normal growth conditions.

High lipid peroxidation (indicated by MDA) caused by ROS resulted in cellular and membrane
damage (indicated by EL). In the present study, increasing EL was found in all rice lines/cultivars
under salt stress. KDML105 displayed the highest EL under salt stress. Other lines/cultivars had lower
EL than KDML105 (Figure 5A). Similarly, a significant increase in MDA was found only in KDML105
under salt stress treatment, whereas no significant change was noted in all other rice lines/cultivars
(Figure 5B). This finding indicated that membrane damage due to salt stress was most pronounced in
KDML105, and the two CSSLs were more resistant than KDML105. The less severe membrane injury
in CSSLs, as well as Pokkali and DH103, could be attributable to higher sugar accumulation in those
plants under salt stress (Figure 4B). It was evident that sugar acts as an osmo-protectant and plays
a crucial role in protecting membrane integrity during cell dehydration [51]. Thus, the higher sugar
contents observed in CSSLs could be attributed to physiological mechanisms in which salt-tolerant rice
plants adapt to protect themselves from cellular damage caused by salt stress.

In this study, higher H2O2 levels were noted in KDML105 and CSSL8-106, while no changes in
H2O2 levels were observed in Pokkali, DH103 and CSSL8-103 (Figure 5C). As CAT is a key enzyme
used to detoxify H2O2 into H2O and O2 [10], the elevated H2O2 levels observed in KDML105 and
CSSL8-106 could be linked to their relatively low activity of CAT compared to other tolerant cultivars
(Pokkali and DH103) (Figure 6B). Although high production of H2O2 and low activity of CAT were
found in CSSL8-106, membrane injury of this rice line was less strongly affected than its recurrent parent,
KDML105 (Figure 5A,B), suggesting that CSSL8-106 had other antioxidant defense mechanisms to
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protect against membrane damage from elevated ROS (H2O2). After recovery, SOD and CAT activities
significantly increased, whereas H2O2 levels appeared to decrease, presumably because salt-induced
ROS generation had been removed and the equilibrium between ROS generation and antioxidant
machinery was re-established [8]. Increasing antioxidant enzymes, especially SOD, might result from the
high production of ROS in chloroplasts during the enhanced photosynthesis process, as high PN values
were observed in all rice lines/cultivars after the plants had recovered from stress (Figure 3A). Tripathy
and Oelmüller [9] reported that aerobic metabolic activity, such as respiration and photosynthesis,
caused ROS production.

Ion exclusion is a major salt tolerance mechanism in plants that serves to decrease Na+ and Cl−

uptake [4]. The higher Na+/K+ ratios were observed in the root rather than the leaf tissues (Figure 7).
It was evident that salt-tolerant cultivars were imposing Na+ uptake at the roots while preserving
more K+ throughout their tissues and translocating less Na+ to the shoots and leaves [52]. This process
is clearly seen in the salt-tolerant genotype Pokkali (Figure 7 and Supplementary Figure S4), indicating
efficient ion exclusion ability in this cultivar. Conversely, when salt was applied, DH103 accumulated
the highest Na+, resulting in the highest Na+/K+ ratios being observed in this line. This finding
indicates less ability to maintain ion homeostasis in the drought-tolerant donor DH103 (Figure 7 and
Supplementary Figure S4). For CSSL8-103, the plants absorbed the highest Na+ in roots, similar to
DH103. However, the Na+ content in leaf tissues was lower than that of DH103. In addition, the Na+/K+

ratio in this line was lower than that of DH103, suggesting better ion homeostasis regulation (Figure 7
and Supplementary Figure S4). Although no significant differences in leaf Na+/K+ ratios were detected
among both CSSL lines and KDML105 (Figure 7B), salt-exposed CSSLs showed better growth than
KDML105 (Figure 8). The superior salt tolerance ability of these lines is probably due to tissue tolerance
mechanisms. Ion exclusion, osmotic stress tolerance and tissue tolerance are important mechanisms
for salt tolerance in crop plants [53]. Moreover, Na ion content is not the only key factor which confers
salt stress tolerance, because there are numerous physiological responses and tolerance levels among
rice genotypes that accumulate the same level of Na ions [54].

A significant decrease in plant growth was observed in all rice lines/cultivars under salt stress
conditions. However, the highest dry weight (DW) was found in the salt-tolerant genotype Pokkali,
even though the percentage of reduction was higher than that in salt-stressed CSSL8-106 lines and
DH103. The DW under stress of CSSL8-103 and CSSL8-106 was higher than that of parental KDML105
plants (Figure 8). These results suggested that both CSSL lines showed better growth than KDML105.
The percentage reduction of DW in DH103 was the lowest, albeit the lowest DW compared to other
lines/cultivars. This finding indicated that a drought-tolerant donor (DH103) showed higher tolerance
to salt stress than did the recurrent parent, KDML105. Previous reports supported that salt-tolerant
cultivars had fewer symptoms from salt stress than did salt-sensitive cultivars, leading to better growth
performance [14,31,55].

When plants were allowed to recover from salt stress, the growth of all rice lines/cultivars
significantly increased. The QTL donor DH103 showed the highest growth recovery percentage, followed
by the recurrent parent KDML105, the salt-tolerant cultivar Pokkali, CSSL8-106 and CSSL8-103 (Figure 8).
Growth recovery relies on physio-morphological adaptation, i.e., cell cycle activity, cell expansion and
cell wall extensibility [56]. The high growth recovery of DH103 may be due to fewer negative impacts
from salt stress. For KDML105, high growth recovery may result from the ability to maintain PSII during
the stress period (Figure 3E), and the high efficiency of chlorophyll production at the recovery stage
(Figure 1B), leading to a greater increase in photosynthesis rates (Figure 3A). In addition, KDML105 had
lower Na+/K+ ratios in roots and leaves during recovery compared to those during stress (Figure 7).
The growth recovery percentage of both CSSLs was lower than their recurrent parent, KDML105.
This may be because the PSII system of both CSSLs was considerably more damaged during stress,
and they were not able to produce more chlorophyll during the recovery period (Figures 1B and 3E).
Notably, CSSL8-103 had the lowest growth recovery percentage. This phenomenon could be caused by
excessive Na+ uptake in roots and significantly reduced K+ uptake (Supplementary Figure S4). During
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the stress period, the roots of CSSL8-103 might have been seriously affected and may consequently
have had less capacity to resume functions during the recovery period (Na+/K+ ratio remained high
in the recovery period, Figure 7). The mechanisms responsible for recovery growth depend largely
on root growth involving an increase in cell wall extensibility due to increased expansin activity and
the recovery of cell cycle activity associated with the recovery of hormone signalling regulation [56].
In Pokkali, which is salt tolerant, the plants were able to retain relatively high biomass during the
stress period; hence, this cultivar showed a lower percentage recovery than DH103 and KDML105.
Moreover, the Na+/K+ ratio in roots of Pokkali after recovery was lower than that during the stress
period (Figure 7).

The salt stress responses of CSSLs were clearly associated with chlorophyll- and photosynthesis-
related parameters. However, CSSL8-103 and CSSL8-106, which are studied in the present work, displayed
different physiological performances under salinity stress. This difference may be observed because
different DT-QTL segments introgressed in their genome. Based on our previous reports, it can be
summarized that CSSL with DT-QTLs in the RM3480 region tended to have higher salt tolerance than
other lines [16,57]. Thus, CSSL8-106, which has a DT-QTL segment in the RM3480 region, performed
better under salt stress than did CSSL8-103 (Supplementary Figure S2). It is evidenced that specific QTLs
could be associated with stress-related phenotypes in crop plants [58]. Although CSSLs had lower capacity
to tolerate salt stress than the salt-tolerant genotype Pokkali, both CSSLs showed several physiological
responses indicative of higher tolerance over their genetic background, KDML105, during exposure to
salt treatment. Therefore, these improved lines could be feasible candidate plant materials for genomic
regions governing leaf greenness and photosynthetic traits to develop salt- and drought-tolerance jasmine
rice (KDML105). Under natural conditions, drought or soil salinity can occur temporarily. Ideal crop
plants should possess not only high tolerance during stress periods but also good capacity to resume
growth after recovery. Therefore, new and improved cultivars with a KDML105 genetic background will
exhibit stronger tolerance to drought and salt stress and will rapidly recover from stress symptoms.

5. Conclusions

There are many ways for plants to adapt to salinity stress. It was revealed that two lines of
CSSLs, which were introgressed with DT-QTL from the donor plant DH103, showed physiological
superiority (photosynthesis performance, ROS scavenging ability, less membrane damage and higher
sugar) under salt stress conditions compared with their recurrent parent KDML105. Among the two
CSSLs, CSSL8-106 was superior to CSSL8-103 especially in its lower reduction in chlorophyll content
associated with the higher expression of chlorophyll biosynthesis genes. Although KDML105 was
severely affected during the stress period, it showed better recovery compared to the CSSL lines.
Better recovery ability may result from the ability to maintain photosynthetic machinery in PSII during
the stress period and higher chlorophyll production during recovery. These findings may pave the
way for further work attempting to improve the drought and salt tolerance of KDML105 rice and CSSL
lines; in particular, CSSL8-106 is a line that may be used for gene dissection in breeding programs
in the future. Moreover, Os08g41990, a gene in the chlorophyll biosynthesis pathway located on
the introgressed QTL, might play a role in maintaining chlorophyll content under stress. It may be
interesting to study the function of this putative gene in greater detail to further characterize its role in
protecting plants from environmental stress.
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