
����������
�������

Citation: Kanjanasiranont, N.;

Butburee, T.; Peerakiatkhajohn, P.

Characteristics of PM10 Levels

Monitored in Bangkok and Its

Vicinity Areas, Thailand. Atmosphere

2022, 13, 239. https://doi.org/

10.3390/atmos13020239

Academic Editors: Jianmin Chen

and Thomas Plocoste

Received: 2 January 2022

Accepted: 28 January 2022

Published: 30 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Characteristics of PM10 Levels Monitored in Bangkok and Its
Vicinity Areas, Thailand
Navaporn Kanjanasiranont 1, Teera Butburee 2 and Piangjai Peerakiatkhajohn 1,*

1 Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand;
navaporn.kan@mahidol.ac.th

2 National Nanotechnology Center, National Science and Technology Development Agency,
111 Thailand Science Park, Pathum Thani 12120, Thailand; teera.but@nanotec.or.th

* Correspondence: piangjai.pee@mahidol.ac.th; Tel.: +66-24-415-000

Abstract: The ambient air concentrations of PM10 were observed in Bangkok and its vicinity areas
including Nonthaburi and Nakhon Pathom, Thailand. The selected study areas are located near
heavy-traffic roads with a high concentration of traffic-related air pollution. The ambient air samples
were collected in the winter season (October 2019 to February 2020). The highest average level of
PM10 was found in Nonthaburi (66.63 µg/m3), followed by Bangkok (56.79 µg/m3) and Nakhon
Pathom (40.18 µg/m3), respectively. The morphology of these particles is typically spherical and
irregular shape particles. At the sampling site in Bangkok, these particles are primarily composed
of C, O, and Si, and a certain amount of metals such as Fe, Cu, and Cr. Some trace amount of other
elements such as Ca, Na, and S are present in minor concentration. The particles collected from
Nakhon Pathom and Nonthaburi sampling sites contain the main abundant elements C, O, and Si,
followed by Cu, Cr, S, Fe, Ca, and Na, respectively. These particles are an agglomeration of carbon
particles resulting from the incomplete combustion of organic matter. Their origin may be associated
with road dust, vehicle emission, and the erosion of building products. It can be noted that the levels
and characteristics of PM10 are key factors in understanding the behavior of the particles in not only
atmospheric visibility but also human health risks.

Keywords: PM10; particle morphology; chemical composition; Thailand; traffic area

1. Introduction

Nowadays, particulate matter (PM) is the most serious problem of air pollution in
Thailand, and especially in Bangkok and its vicinity areas. Traffic emissions are recognized
as the major source of air pollution in Bangkok, Nonthaburi, and Nakhon Pathom. Nor-
mally, PM with a diameter of less than 10 µm (PM10) are generated from both natural
and anthropogenic sources. The major source of man-made pollutant comes from biomass
burning, agricultural burning, and the burning of fossil fuels [1]. In Northern Thailand,
the burning of agricultural residue is the major source of PM10. Moreover, the burning of
fossil fuels. PM10 mainly originate from vehicle emission [2]. In urban areas, PM10 are
principally derived from transport vehicle fuels that are the dominant source of pollution
in the ambient air. Many health impacts are caused from exposure to PM10, for instance,
heart disease, lung disease, chronic bronchitis, stroke, and cancer [3]. PM is harming not
only human health but also the atmospheric visibility [4].

PM10 has the potential to carry several chemicals, including toxic chemicals. The
contamination of PM is caused from vehicle emission and high traffic congestion, especially
trace elements [5]. In urban area, Pb, Cr, Cd, Cu, Zn, and Fe were the predominant
contributors of trace elements, which generated from automobiles [6]. Chronic exposure to
these components that are bound to PM has a wide range of health effects. The exposure
to heavy metals associated with PM may cause high blood pressure, kidney damage, and
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lung cancer [7]. Therefore, a better understanding of the status and trends in air quality in
Thailand is crucial to support national, and regional governments in policy-making and
implementation, as well as to improve the tools of air quality assessment and management.
Moreover, an assessing the chemical compositions, contents of metal elements in PM10 of
trace elements should be considered. Several studies have been revealed to determine the
concentration of particulate concentration in atmosphere; however, there is limited data on
characterization in terms of morphological feature and elemental chemical composition of
particulate matter.

Typically, particulates have different shapes, sizes and chemical composition in relation
to emission sources. Hence, the physical-chemical and morphological determinations of
particulates are one of the main aspects for identification of emission sources as well as
environmental and health effects [8,9].

Due to the complexity of PM, it is difficult to determine the characteristics which
leads to the adverse health effects [8,10,11]. Transmission electron microscopy analysis has
been used to identify for the morphological characteristics of individual particles which is
overcome the limitations imposed by bulk chemical analysis [12,13].

Therefore, the present study has been conducted to determine not only the concentra-
tion of particulate matter, but also their morphological and chemical composition. Herein,
the obtained data could provide more valuable information on the local air quality and
chemical composition of PM10.

2. Materials and Methods
2.1. Air Sampling Site

The locations of the selected study area were observed in Bangkok (BK), and its
vicinity area included Nonthaburi (NB) and Nakhon Pathom (NP) as shown in Figure 1.
The ambient air samples of BK were observed at two locations consisted of Din Daeng
(BK1) and Pathum Wan Districts (BK2). Both BK1 and BK2 were selected as the inner area
of Bangkok and these sampling sites were situated in the high traffic areas. The location
of the selected study area of NB site was within a high traffic density area around the
Bang Kruai district. The PM10 data of BK and NB areas were obtained from Pollution
Department Control (PCD). The study areas of NP site are represented the air polluted area
near the intersection of main heavy traffic congested roads around Mahidol University,
Salaya Campus. All samples were observed from October 2019 to February 2020.
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2.2. Air Sampling Procedure

The ambient PM10 were collected by using a high-volume air sampler operated at
a flow rate of 40 ft3/min. PM10 were collected simultaneously in a 24 h period for all
sampling sites.

2.3. TEM-EDS Characterizations

The morphological and quantitative elemental characterization of particles were in-
vestigated using transmission electron microscopy (TEM JEOL 2100 Plus, Japan) equipped
with energy-dispersive X-ray spectroscopy (EDS). EDS spectra of the individual particle
was obtained by scanning an electron beam with an accelerating voltage of 200 kV to
determine the individual elemental composition.

2.4. Data Analysis

SPSS software for Windows, version 20, was utilized for statistical analysis in this
study. The comparison of PM10 levels among the sampling sites (BK, NP, and NB) were
analyzed using One-way analysis of variance (ANOVA) [14–16]. A p-value of 0.05 was
used for all cases.

3. Results and Discussions
3.1. Ambient Concentration of PM10

The ambient PM10 levels of all sampling sites are depicted in Figure 2. All detected
concentrations of PM10 did not exceed the 24-h PM10 standard of Thailand (120 µg/m3),
excepted for the PM10 levels monitored in Nonthaburi Province. The PM10 data of the
sampling days reported by Pollution Department Control showed the mean concentration
of PM10 at Nonthaburi Province was 66.63 ± 42.17 µg/m3, however the PM10 concen-
tration derived from the sample collected on the samples of 9th December exceeded the
standard value. For the sampling site in Bangkok, the average levels of PM10 in BK1
(62.78 ± 11.70 µg/m3) was greater than those detected in BK2 (50.80 ± 20.82 µg/m3). The
average PM10 levels at NP1 and NP2 were 38.32 ± 4.23 and 43.03 ± 7.16 µg/m3, respec-
tively. However, there was no significant difference in the levels of PM10 among all the
sampled sites for BK and NP (F statistic value is 1.589, Sig 0.223). The trend of PM10
was almost similar because all sampling sites were evaluated in atmospheric samples of
a high traffic density area. In order to determine the differences of PM10 levels among
all sampling locations, ANOVA was used, and it revealed that there were no significant
differences among all the sites as shown in Figure 3.

3.2. Comparison of the PM10 Concentrations with Other Studies

The comparison of PM10 concentrations in this study with other studies is shown
in Table 1. The lowest mean concentrations of PM10 were found in Rayong Provinces
(Thailand), while the highest mean levels of PM10 were observed in Nepal. The concentra-
tions of PM10 in Bangkok and its vicinity (NP and NB) were lower than those conducted
in China, Pakistan, and Nepal, respectively. In this study, only the PM10 level of BK site
was greater than that monitored in Iran. Many human activities, which includes industrial
processes and motor vehicle exhaust, contributing to ambient PM10.

3.3. Morphology and Chemical Composition of PM10

The TEM-EDS was carried out to analyze the morphology and chemical composition of
PM10 with different sampling sites (BK1, BK2, NP1, NP2, and NB), as shown in Figure 4a–e.
It can be noticed that the diameter size of the single primary particles was not significantly
different for PM10 collected in BK1 and BK2 sampling sites. Figure 4a,b illustrates the
particles of BK 1 and BK2 sampling sites mainly present a perfectly spherical and irregular
shapes, ranging from 2–3 µm. It can be noticed that the PM particles composed of the single
primary particles with the average diameter sizes approximately 10–50 nm.
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Table 1. Average ambient concentrations of PM10 in other locations.

Site Average Concentration (µg/m3) References

Bangkok, Thailand 57 This study
Nonthaburi, Thailand 42 This study
Nakhon Pathom, Thailand 40 This study
Rayong, Thailand 16 [17]
Kathmandu, Nepal 822 [18]
Arak, Iran 50 [19]
Charsadda, Pakistan 254 [20]
Khyber Pakhtunkhwa,
Pakistan 208 [20]

Shanghai, China 149 [21]
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Figure 4c,d present the average diameter sizes, approximately 2–3 µm and 2.5–3 µm
of irregular particles from NP1 and NP2, respectively. The particles from NB sampling
site present the spherical particles and small agglomerate chain with the average diameter
sizes, approximately 2–3 µm and 30–80 nm, respectively, as shown in Figure 4e.

It can be noted that the TEM images of PM10 for all sampling sites revealed the
spherical and irregular particles. However, it was observed there are differences in par-
ticle aggregation of PM10 with different sampling site. According to Buseck et al., the
morphology of soot particles present a chain-like spherical agglomeration of carbonaceous
particles that is produced by engine combustion and biomass burning sources [22]. Then, it
can be observed that the TEM-EDS images of particles at BK1, BK2, and NB sampling site
revealed the soot particles characteristic. Besides, it can be indicated that the concentration
of soot particles at different sites was strongly varied significantly depending on high traffic
density and commercial area. It can be confirmed that the morphological change depends
on sampling site could be attributed to the surrounding environment, season, and human
activity in sampling area [23,24]. In addition, the small particles aggregation may raise
the surface area for other component deposition and lead to high risk for health effects.
Typically, large surface area of ultrafine particle increases their interaction with lung tissue,
and can cause damage to human respiratory system [25–27]. Furthermore, an increase in
number of particles simultaneously increases the surface area, leading to rapid deposition
of microscopic airborne toxic elements [8,9,23,28]. Hence, it is a challenge to reduce PM
emissions and the associated risks to human health from exposure to PM10.

The elemental mapping depicts the distribution of different elements (C, O, Na, Si,
K, Ca, Cr, Fe, and Cu) in the particle. Basically, the particles morphology and chemical
composition, illustrate an abundance of natural elements within the sampling area [13,29].
However, some of the elements presented are directly related with human activities. The
particles with irregular shape were observed in coarse particle natural sources. It can be
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noted that the high surface area provides more distribution of metal atoms, contributing to
the diffusion of contaminated particles effected on human health [13,29].

Figure 5 illustrates the EDS spectra of the PM10 at different sampling sites, which
exhibits the compositional data of elemental chemical constituents with the presence of nine
elements (C, O, Na, Si, K, Ca, Cr, Fe, and Cu) for all sampling sites. Majority of elemental
constituents of PM10 samples in various sampling sites (BK1, BK2, NP1, NP2, and NB)
with averaged values of weight percentage (wt.%) as shown in Table 2. The quantitative
elemental analysis of EDS, which was considered at different elements contained not only
C and O but also metal elements such as Si, Ca, Na, Cu, Cr, Fe, and S.
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Table 2. Quantitative elemental analysis of PM10 samples in sampling sites by TEM-EDS.

Sampling Sites
Elements (wt.%)

C O Si Ca Na Cu Cr Fe S

BK1 85.89 8.55 3.42 0.01 0.01 1.62 0.24 0.23 0.04
BK2 85.60 7.69 5.22 0.01 0.01 1.21 0.03 0.21 0.04
NP1 83.61 9.32 6.15 0.01 0.01 0.45 0.03 0.21 0.21
NP2 73.22 11.28 13.49 0.01 0.01 0.66 0.09 1.15 0.09
NB 88.59 7.15 3.17 0.01 0.01 0.98 0.02 0.03 0.05
S.D. 5.95 1.62 4.21 0 0 0.46 0.09 0.45 0.07

Based on the relative abundance of weight percentage of the elements, it was found
that the entire airborne particles collected from different sampling sites were carbonaceous,
i.e., the organic particles are mainly composed of C and small amounts of O [13].

The BK1 and BK2 sampling sites present a high content of C, O, Si, and Cu with minor
content of other elements such as Ca, Na, Si, Cr, Fe, and S. However, the BK1 sampling site
exhibited a higher content of Fe, Cu, and Cr metal elements than that of other sampling
sites. Meanwhile, the particles at NP1 and NP2 sampling sites were mainly composed of C,
O, and Si, and some components namely Ca, Na, Si, Cu, Cr, Fe, and S. Interestingly, the
Si (13.49 wt.%) and Fe (1.15 wt.%) were the dominated elements of the NP2 area which
is higher than that of other sampling sites. The particles at NB sampling site contained a
higher weight percentage of C, O, Si, and Cu, and minor Ca, Na, Cr, Fe, and S elements.
It can be noticed that the NB sampling site with high concentration of PM10 showed the
composition of Si element less than that of other sampling sites.

The particles at BK1 revealed a high metal content such as Fe, Cu, and Cr which may
be mainly derived from anthropogenic activities such as construction, abrasion of metallic
materials, and vehicles or fuel-oil combustion [30,31]. The concentration of organic and
metal elements was found to be strongly related with high traffic density in residential
and commercial areas. Besides, the particle in all sampling area containing some min-
eral elements which may come from natural sources such as soil dust, resuspension of
dust from road, and some other human activities such as construction and traffic-related
sources [8,23,32]. Generally, Ca and S elements in particles are originated by acid-base
neutralization reactions in the atmosphere, the deterioration of building surfaces and
desulphurization of fuel gas [5].

The particles are composed primarily of Si, Ca, Na, and Fe, their origin is mainly
come from erosion of building products, road dust and acid-base neutralization reactions
in atmosphere [28,30]. This implies that the pollution in the region is primarily vehicle
emission. Similarly, previously studies have shown that the metal and heavy metals Fe, Cr,
Cu, and S are the main pollutants in urban street dust [31,33,34]. It can be confirmed that
the PM10 in Bangkok, Thailand has a wide range of physical and chemical characteristics
including structure, shape, size, and chemical composition.

4. Conclusions

PM10 concentrations in this study were mainly affected by the traffic emission. The
vehicular exhaust emissions produce particles mostly in all sampling sites. This study has
shown that the overall average concentrations of PM10 were within an acceptable level
according to the Thailand standard. The particle morphology of PM10 collected from all
urban residential sampling sites was spherical with chain-like aggregates and irregular
shapes, ranging from 2–3 µm. For the element composition analysis, the particles contained
not only a higher percentage of carbon and oxygen, but also some mineral and metal
elements. Among the metal elements, Cu, Cr, and Fe were the dominated metal element
at sampling site in Bangkok area. Meanwhile, Si was standing as the main component
at sampling site in Nakhon Pathom and Nonthaburi areas. The composition elements
of PM10 collected from different areas show the presence of a wide diversity of particles
from natural and anthropogenic origin such as engine combustion and construction. No-
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tably, the morphology and elements found in the PM10 indicate the importance of the
individual characterization of atmospheric aerosols which provides the valuable additional
information on the potential health effects and origin of particles.
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