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Exploring dynamic protein-protein 
interactions in cassava through the 
integrative interactome network
Ratana Thanasomboon1,2, Saowalak Kalapanulak2,3, Supatcharee Netrphan4 & 
Treenut Saithong2,3*

Protein-protein interactions (PPIs) play an essential role in cellular regulatory processes. Despite, in-
depth studies to uncover the mystery of PPI-mediated regulations are still lacking. Here, an integrative 
interactome network (MePPI-Ux) was obtained by incorporating expression data into the improved 
genome-scale interactome network of cassava (MePPI-U). The MePPI-U, constructed by both interolog- 
and domain-based approaches, contained 3,638,916 interactions and 24,590 proteins (59% of proteins 
in the cassava AM560 genome version 6). After incorporating expression data as information of state, 
the MePPI-U rewired to represent condition-dependent PPIs (MePPI-Ux), enabling us to envisage 
dynamic PPIs (DPINs) that occur at specific conditions. The MePPI-Ux was exploited to demonstrate 
timely PPIs of cassava under various conditions, namely drought stress, brown streak virus (CBSV) 
infection, and starch biosynthesis in leaf/root tissues. MePPI-Uxdrought and MePPI-UxCBSV suggested 
involved PPIs in response to stress. MePPI-UxSB,leaf and MePPI-UxSB,root suggested the involvement of 
interactions among transcription factor proteins in modulating how leaf or root starch is synthesized. 
These findings deepened our knowledge of the regulatory roles of PPIs in cassava and would undeniably 
assist targeted breeding efforts to improve starch quality and quantity.

In cells, protein-protein interaction (PPI) is an important step that mediates the action of expressed proteins to 
function precisely in the regulatory process of signal transduction, homeostasis, and organ formation1. Over 60 
percent of entire proteins in genomes need to interact with their counterparts to achieve their functions, usually 
through post-translational modification (PTM)2. The interaction between proteins might last lasting as in cases 
of stable multi-protein complexes. These interacting proteins are often found in cellular structures, e.g. binding 
of actin-cross-linking protein (CROLIN1) and F-actin protein to form actin structures in Arabiodopsis3, and are 
involved in the process of cell and organ formation, e.g. heterodimeric complex of the catalytic molybdopterin 
subunit and a c-type cytochrome subunit in Starkeya novella involved in electron transfer of sulfite-oxidizing 
enzyme4. The interactions could also be temporary, allowing transient mediation of regulatory states through 
changes in protein activity, stability, and localization across cellular compartments5, which are sources of dynamic 
regulation in cells. Some examples of transient protein interactions are the phosphorylation-dependent function 
of starch branching enzyme IIa (SBEIIa) in wheat, whereby the active form of SBEIIa is modulated by its inter-
action with kinase or phosphatase proteins;6 the stability of autophagy protein 6 (ATG6) in Arabidopsis, which 
depends on its interaction with tumor necrosis factor receptor-associated factor TRAF1a and TRAF1b proteins;7 
and CSN1-induced COP1 nuclear localization in Arabidopsis, where the association of COP1 and signalsome 
COP9 (CSN) is crucial8. Monitoring the transient interaction of proteins has been a real challenge; thus, meas-
urement technologies such as combinatorial blue native PAGE and mass spectrometry9, mass spectrometry10, 
NMR spectroscopy11, bimolecular fluorescence complementation12, label-free biosensor13, and yeast two-hybrid 
(Y2H)14 have been developed to capture such interactions, but these are time consuming and expensive.
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Computational prediction techniques have recently been employed to facilitate the identification of PPIs. 
Inference-based techniques rely on the knowledge from well-studied organisms, existing in literature, and ther-
modynamic properties of protein interactions. Interolog15 and domain-based16 methods, which predict unknown 
PPIs based on the evidence of interactions between their orthologous proteins and the presence of interacting 
protein domains, respectively, are the most widely techniques16–25. The first interactome network of plant spe-
cies studied in Arabidopsis inferred 19,979 putative PPIs from 73,454 PPIs, determined experimentally in yeast, 
nematode worm, fruit fly, and humans20. Later, interactome network of rice was extendedly inferred from both 
experimental and prediction data23. Additionally, advanced algorithms in modern deep learning approaches have 
been introduced to analyze large-scale data, to provide ab-initio predictions26–32. With these approaches, PPI 
networks in various organisms15,20,33,34 have been constructed, but these are neither time nor condition-specific; 
thus, they do not reflect the dynamics of PPIs participating in the cellular response to exposed environments. 
Attempts to investigate the transient PPIs that introduce changes in the regulatory process in response to prevail-
ing conditions have been made through the integration of state-dependent data into the interactome networks. 
For example, Lichtenberg et al. (2005)35 and Wang et al. (2013)36 constructed dynamic PPI networks of the mitotic 
cell cycle in yeast using time series microarray data, based on the assumption that PPIs occur or function only if 
the proteins are present or expressed under the studied conditions. This integrative method proposed a series of 
PPI subnetworks functioning in each condition and provided a state-specific PPI network governing the yeast 
cell cycle.

In plants, PPIs are important for the development37,38 and stress response processes39,40. Plenty of evidence 
shows that PPIs modulate metabolic regulation affecting the yield of crop plants. For example, the rice 14-3-3 pro-
tein complex can interact with FD transcription factors to form a florigen activation complex (FAC) which affects 
yield through promoting the flowering pathway41. Another report in tomato shows a disruption of the FAC com-
plex by an imbalance between flower-promoting (SFT) and flower-repressing (SP) signals, due to perturbation, 
is related to yield42. Several PPI networks have been reported for various species, including Arabidopsis21,22,43–45, 
rice17,23,46, maize24, tomato25, and sweet orange47. These were mainly based on the interolog or domain-based 
approach, though a combination of both was used to gain more prediction coverage in genome-scale studies. 
With this success, the next challenge is to access the time- and/or condition-specific interactions of proteins that 
might be the causes of various plant phenotypes.

Cassava (Manihot esculenta Crantz) is a staple crop whose starchy roots feed at least 800 million people annu-
ally48. Cassava yield and production are, thus, crucial for securing food sufficiency worldwide. To elucidate cel-
lular regulations involved in starch biosynthesis as well as crop yield, protein expression in various conditions, 
for example during root development49, drought stress50, and in specific tissues51–54, has been studied. However, 
the interaction among these expressed proteins, which is believed to be key to the regulatory processes under-
lying observed phenotypes, is still unclear. Qin et al. (2017)55 proposed a group of cassava PPIs (196 interac-
tions of 76 proteins) that are potentially associated with post-harvest physiological deterioration (PPD) of roots, 
based on the interactome network of Arabidopsis. Later, the first genome-wide interactome network of cassava, 
named MePPI-In, was proposed by Thanasomboon et al. (2017)56, and this provides the platform for this current 
study. MePPI-In was developed based on the interolog method and consists of 90,173 PPIs and 7,209 proteins, 
but it is not able to elaborate on PPIs functioning in a particular condition. Herein, we propose an integrative 
interactome network (MePPI-Ux) that could be used to capture the dynamic PPIs that are linked to different 
regulatory processes in cassava. The genome-scale PPI network of cassava (MePPI-In) was improved by expand-
ing the number of template species for the interolog-based prediction and by increasing the coverage of pre-
diction with the domain-based approach, using the updated genome sequence (v.6). The resulting network, so 
called MePPI-U, consisted of 3,638,916 interactions and 24,590 proteins covering 59 percent of proteins in the 
cassava genome. The MePPI-U provides a greater percent coverage than its precursor, MePPI-In56 (hereafter 
called MePPI-In4

56). Gene and protein expression data were incorporated into MePPI-U as information of state, 
enabling it to represent the PPIs under the specific conditions (MePPI-Ux). The MePPI-Ux was exemplified to 
investigate condition-dependent PPIs under drought stress, cassava brown streak virus (CBSV) infection, and 
starch biosynthesis in leaf and root tissues. The MePPI-Ux,CBSV and MePPI-Ux,drought provided insights into PPI 
modulated stress response, whereas MePPI-UxSB,leaf and MePPI-UxSB,root suggested that starch biosynthesis in 
these individual tissues might be mediated by the interaction of transcription factor proteins. These findings 
supported the rationale of the integrative interactome network MePPI-Ux in deepening the study of PPIs under 
the prevailing conditions.

Methods
Protein-protein interaction network construction.  The interolog-based and domain-based 
approaches were employed to construct the cassava protein-protein interaction network, called hereafter 
MePPI-U. First, the interactions of proteins were predicted based on the interolog method whereby PPIs of cas-
sava were inferred from their orthologs in nine template organisms, selected based upon these criteria: (1) having 
a close evolution with cassava (i.e. Ricinus communis (castor bean) and Populus trichocarpa (poplar)), (2) being 
a starch-storing plant (i.e. Solanum tuberosum (potato), Zea mays (maize), and Oryza sativa (rice)), or (3) hav-
ing abundant PPI information (i.e. Arabidopsis thaliana, Lycopersicum solanaceae (tomato), Glycine max (soy-
bean), and Citrus sinensis (sweet orange)). Their protein information was retrieved from Phytozome V.1157, and 
the interactions were exhaustively collected from ten PPI databases, AtPID21, AtPIN22, PRIN23, PPIM24, PTIR25, 
APID43,PAIR45, IntAct58, MINT59, and Ding et al.47. The orthologous proteins of cassava were identified by 
BLASTp sequence alignment based on these criteria: percentage of identity ≥ 60%, percentage of coverage ≥ 80% 
and e-value ≤10−10. PPIs inferred by the interolog-based method were then used to construct a network, denoted 
as MePPI-In6. In parallel with the MePPI-In6, MePPI-D6 was constructed based on domain information. The PPIs 
were predicted when binding domains of both proteins interact. The information on cassava protein domain and 
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domain-domain interaction (DDI) was gathered from Pfam60 and iPfam61 databases, respectively. In this work, 
the protein-protein interaction was predicted when, at least, one DDI occurs between protein pairs. PPIs inferred 
by the DDI-based method were used to construct a network denoted as MePPI-D6. Third, the resulting PPIs from 
both interolog- and domain-based predictions (MePPI-In6 and MePPI-D6, respectively) were combined to gen-
erate the MePPI-U, a network with all possible PPIs of cassava. The overall framework for MePPI-U construction 
is described in Fig. 1.

Supporting MePPI-U with expression data.  The constructed MePPI-U was validated on the fact that 
interaction of proteins could be achieved only if proteins or the corresponding protein-coding genes are expressed 
and with high probability if the expression patterns are correlated. Here, 15 expression datasets were employed to 

Figure 1.  Overall methodology of PPI prediction in cassava consisting of two parts: (a) construction of protein-
protein interaction network of cassava (MePPI-U) using interolog-based and domain-based approaches and (b) 
development of integrative interactome network to infer PPIs acting under various conditions.
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support the existence of proteins in MePPI-U. From these datasets, seven represent protein expression in cassava 
roots (fibrous and storage roots), leaves, embryos and plantlets at different development stages49–54,62 and eight are 
gene expression in the form of either microarray-based datasets63–66 or RNA-seq-based datasets67–70. Subsequently, 
co-expression patterns of the interacting protein pairs were determined using information from five time-series 
expression datasets of Naconsie et al.49, An et al.63, Li et al.64, Amuge et al.69 and Wang et al.70. The co-expression 
analysis was conducted only for highly expressed genes or proteins that exhibit expression levels greater than 80 
percentile rank to ensure the existence of the interacting proteins. Correlation of expression profiles was deter-
mined by Pearson’s statistics; the profiles were adjudged correlated when the Pearson correlation coefficient 
(PCC) is> 0.90 for microarray-measured data, or> 0.99 for RNA-seq measured data, at p-value < 0.1.

Validation of MePPI-U with PPIs from yeast two-hybrid method.  Putative PPIs in MePPI-U 
were validated based on the results from yeast two-hybrid method. Here, 200 investigated interactions (47 
interactions and 153 non-interactions) between eight CBLs (Calcineurin B-like (CBL) protein) and 25 CIPKs 
(CBL-interacting protein kinase) proteins from MePPI-U were compared with the results from yeast two-hybrid 
reported by Mo et al. (2018)71. The predictive power for PPIs in MePPI-U was measured using a confusion 
matrix72, whereby accuracy, precision, specificity and sensitivity were determined.

Determination of confidence score.  The confidence of the predicted PPIs in MePPI-U was evaluated 
based on the agreement of predictions from both methods: interolog and domain-domain interaction analyses. 
Unlike our previously constructed network “MePPI-In4”56, a domain-based prediction was performed to extend 
the search for putative PPIs in cassava. The confidence value (CV) score was calculated to represent the amount 
of information supporting the prediction of each PPI. To suit the objective of measurement, the original formula 
for the calculation of CV  score56 was modified accordingly. Here, the confidence score was a mean of the interolog 
(CVinterolog)56 and DDI (CVDDI)56 confidence values (Eq. 1). The confidence score of the interolog-based prediction, 
CVinterolog , was calculated based on the number of plant templates from which the cassava PPI was inferred and 
also the source of identified interactions (i.e. computational prediction or experimental measurement) in tem-
plate species (Eq. 2). The confidence score of the domain-based prediction, CVDDI, was determined based on the 
number of domain-domain interactions (DDIs) underlying the prediction of a protein pair (Eq. 3).
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∈S {0, 1} is the existence factor representing the occurrence of the orthologous protein pairs in the cassava 
genome. M  refers to the reliability of the protein-protein interaction regarding the inference methods as evi-
denced in plant templates, .0 5 for computational prediction, and 1 for experimental measurement. 

∈ …N {1, 2, , 9} is the number of species from which the protein-protein interactions in cassava were inferred. 
=D [0, 1] refers to domain enrichment, which is defined as the ratio of predicted DDIs to all possible interac-

tions that could happen among identified domains in a protein pair. ∈ .d {0 5, 1} is the correction factor of D to 
compensate the bias caused by varying number of domains in each protein pair, 0.5 for interactions of a single 
domain protein, and 1 for otherwise.

Network topology and functional analysis.  The topology of the interactome network was analyzed 
using network analyzer plugin tools in Cytoscape73. The scale-free property of the predicted network was exam-
ined and compared with other published plant PPI networks22,23. The biological functions of proteins in MePPI-U 
were investigated based on the ontology of related genes. GO enrichment analysis was performed through 
AgriGO74 and visualized by REVIGO75. The enriched functions were proposed based on hypergeometric statistics 
with p-value <0.05 and presented in terms of biological processes, molecular functions and cellular components.

Transcriptome data analysis and integration.  To investigate the condition-dependent PPIs, the inte-
grative interactome network, MePPI-Ux, was constructed by incorporating transcriptome data into MePPI-U as 
to infer expression of the encoding proteins. RNA-seq datasets of gene expression under cold and drought stress63, 
viral infection69 and in leaf/root tissues67, in cassava, were employed to study the PPI network. The gene expres-
sion in each dataset was ranked by percentile to standardize the data. Only genes with an expression level greater 
than the bottom 10th percentile of entire genes in the dataset were integrated into MePPI-U to infer the putative 
PPIs occurring in that particular condition. The expression of proteins in MePPI-Ux was classified based on the 
percentile into five levels: ≥ 90 percentiles, 75 ≤ percentile <90, 50 ≤ percentile <75, 25 ≤ percentile <50 and 
10 <percentile <25, from high percentile (dark blue) to low percentile (light blue).

Results and Discussion
Cassava protein-protein interaction network (MePPI-U).  The genome-wide PPI network of cas-
sava was exhaustively constructed from the known PPIs from other plant species and available domain-domain 
interaction data using interolog-based and domain-based methods. For the interolog-based method, cassava 
PPIs were inferred from nine well-studied plants, namely Arabidopsis, rice, maize, potato, tomato, sweet orange, 
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poplar, castor bean and soybean. The plant species that contained the most abundant was maize (2,762,560 PPIs), 
followed by tomato (357,946 PPIs), Arabidopsis (235,215 PPIs), rice (76,829 PPIs), sweet orange (13,852 PPIs), 
potato (52 PPIs), castor bean (10 PPIs), soybean (10 PPIs) and poplar (8 PPIs) (Table S1). These differed in com-
parison with the previous work56, in which Arabidopsis provided the most PPI information. These data were 
employed to predict PPIs in cassava based on the functional conservation assumption of the orthologous proteins. 
Cassava orthologous proteins of each known PPI were searched by Blastp based on the following criteria: identity 
≥ 60%, coverage ≥ 80%, and E-value ≤ 10−10. The results showed that most inferred PPIs were from Arabidopsis 
(107,235 PPIs), followed by tomato (97,885 PPIs), maize (32,894 PPIs), rice (17,697 PPIs), sweet orange (2,647 
PPIs), potato (17 PPIs), soybean (7 PPIs), poplar (5 PPIs) and castor bean (1 PPI). The majority of putative PPIs (~ 
95%; 236,008 PPIs) were predicted from the interactions present in, at most, one of nine templates used (Fig. S5); 
10,234 PPIs (~ 5%) were from 2-5 organisms, 8,883 PPIs by two, 1,178 PPIs by three, 161 PPIs by four, and 12 PPIs 
by five organisms. All inferred cassava PPIs were subsequently combined to represent the cassava PPI network 
based on the interolog method (MePPI-In6). The resulting MePPI-In6 network, as described in Table S1, consisted 
of 246,242 PPIs and 13,766 proteins (33 percent of proteins in the cassava genome). This coverage of proteins in 
MePPI-In6 was 12 percent greater than that of MePPI-In4

56, its counterpart from a previous work that used the 
same method. Two main reasons for this difference are updates of the cassava genome database and PPI informa-
tion of plant templates. The genome update resulted from re-sequencing and re-annotation of genes and proteins, 
leading to different information. Comparing proteins from both genome versions shows that around 52% of 
the proteins are similar, while 48% have different information (Fig. S2b). In addition, increases in the number 
of plant templates (7 in MePPI-In4

56 and 9 in this work) and the number of PPIs, particularly from maize (25 in 
the MePPI-In4

56 and 2,762,560 in this work) offer more chance to predict cassava PPIs (MePPI-In6). However, 
prediction by this method seems dependent on the phylogenetic relatedness of cassava to the template species, 
as shown by the higher number of MePPIs predicted from Arabidopsis (107,235 PPIs), a dicot like cassava, than 
from maize (32,894 PPIs), a monocot. Figure S2 shows that ~9.2% (22,730) of PPIs in MePPI-In6 are present in 
MePPI-In4;56 MePPI-In6 has more unique PPIs (223,512) than MePPI-In4

56 (67,443), most likely due to the use of 
different cassava genomes.

Since physical binding of proteins usually occurs via domain affinity, the information on domain-domain 
interaction (DDI) was exploited to predict interactions between cassava proteins beyond the current knowledge 
of PPIs in template species. Basically, two proteins are expected to be able to interact if they contain interacting 
domains. To infer interactions of proteins based on DDI information, the entire proteins encoded in the cassava 
genome were searched for the presence of domains, using information from the Pfam database (https://pfam.
xfam.org). The analysis indicated that 30,025 of 41,381 proteins (~ 73 percent of proteins in the genome) from the 
database had at least one functional domain, which enabled them to physically interact with their counterparts. 
The interactions of those proteins were subsequently predicted based on information on interacting domains 
from the iPfam database (http://ipfam.org). The database version used in this study, as updated in 2016, classi-
fied DDIs into three classes: inter-chain (the DDI between different polypeptide chains), intra-chain (the DDI 
within a single polypeptide chain), and both; in comparison, the older version employed for MePPI-In4

56 only 
contained DDI information without classification. In this study, only the inter-chain DDIs were used to predict 
the interactions between proteins. The domain-based PPI prediction of cassava, denoted as MePPI-D6, consisted 
of 3,424,602 PPIs interconnecting 20,142 proteins or 49 percent of proteins in the cassava genome.

The interolog-based and domain-based PPI networks were combined to yield the PPI network that represents 
all possible protein-protein interactions in cassava, named MePPI-U (publicly available at http://bml.sbi.kmutt.
ac.th/ppi2).The MePPI-U contained 3,638,916 putative interactions and 24,590 proteins (59 percent of proteins 
in the cassava genome) (Fig. S1). Of the overall putative PPIs included in MePPI-U, 214,314 PPIs were derived 
only by the interolog-based method, 3,392,674 PPIs were only by the DDI-based method, and 31,928 PPIs were 
by both methods (0.9 percent of total prediction) (Fig. 2). With a total of 3,638,916 putative PPIs, the protein 
coverage of MePPI-U increased by 26 and 10 percent when compared with predictions by the interolog-based and 
domain-based method, respectively. Since the interolog- and domain-based methods utilize different principles 
to predict PPIs, the combined results not only allow us to compare the information from both sides, but also to 
minimize limitations of each individual method. The small overlap indicated different groups of PPIs (proteins) 
predicted from the two methods; thus, using both methods could predict interactions in broader groups of pro-
teins (Fig. 2b). The MePPI-U network is thus proposed as a large-scale interactome network of cassava that 
describes broad classes of PPIs, including physical interactions between domains.

In comparison, MePPI-U contains more unique putative PPIs (3,607,054) than MePPI-In4
56 (58,311) with 

an overlap of 31,862 putative interactions (Fig. S3). The 58,311 putative interactions in MePPI-In4
56 were not 

included in MePPI-U because of the substantial changes in the cassava genome sequence and PPI information in 
literature. Of the unique 58,311 PPIs in MePPI-In4

56, 12,478 PPIs were lost during the genome sequence improve-
ment (Fig. S2b,c). Sequence re-annotation affects the homology-based analysis; updating the cassava genome 
from cassava V.4 to V.6 caused a mismatch of some template proteins with their counterparts in cassava, resulting 
in the loss of at least 40,215 putative PPIs (see an example in Fig. S4). In addition, the genome update resulted in 
changes in some protein sequences relative to the previous version. For example, the sequence of limit dextrinase 
(LD) protein (Manes.10G051700.1.p) in cassava V.6 was used to represent two proteins (cassava4.1_024672m 
and cassava4.1_004771m) in cassava V.4. Thus, the PPIs related to cassava4.1_024672m and cassava4.1_004771m 
could not be found in MePPI-U. Table 1 summarizes the comparison of MePPI-U and the previously published 
PPI network of cassava, MePPI-In4

56. Since MePPI-U was developed from the more updated information, it 
covered up to 59 percent of proteins in the current cassava genome, in contrast to MePPI-In4

56, which covered 21 
percent of proteins in cassava genome V.4.

https://doi.org/10.1038/s41598-020-63536-0
https://pfam.xfam.org
https://pfam.xfam.org
http://ipfam.org
http://bml.sbi.kmutt.ac.th/ppi2
http://bml.sbi.kmutt.ac.th/ppi2


6Scientific Reports |         (2020) 10:6510  | https://doi.org/10.1038/s41598-020-63536-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Validation of MePPI-U with expression data and yeast two-hybrid study.  The putative PPIs in the 
MePPI-U network were consolidated with the transcriptome and proteome expression data. First, the expression 
of genes or proteins was employed to confirm the presence of those proteins in the network, by assuming that 
the interactions of proteins could only be achieved when proteins or the corresponding protein-coding genes are 
expressed. Thus, the expression information was employed to validate the prediction of PPIs in MePPI-U. The 
presence of proteins in MePPI-U was verified using fifteen collective expression datasets of expressed genes and 
protein expression data, which consisted of seven set of protein and eight set of gene expression (see Methods). 
The expression data supported 99 percent of proteins (24,448 proteins) in MePPI-U; 8,105 proteins (~ 33 percent 
of proteins in MePPI-U) were supported by both the protein and gene expression data (Fig. 3). The confirmed 
proteins thereby supported the occurrence of 3,612,250 interactions in the MePPI-U network. Second, the pre-
dicted interactions were validated further with the co-expression profile of paired proteins, by assuming that the 
co-expressed proteins or genes have a higher probability of interacting. For each predicted PPI, Pearson correla-
tion analysis was performed to examine the concurrent expression of a protein pair in order to support the inter-
action. The five time-series datasets of Naconsie et al.49, Li et al.52, Amuge et al.69, An et al.63 and Wang et al.70 used 
in this study could support 4,742 interactions in MePPI-U (Table 2). The remaining PPIs in the network would 
have to be validated when more applicable time-series expression datasets become available.

Furthermore, MePPI-U was partially validated using PPI data from the yeast two-hybrid method. The 200 
interactions between eight CBLs and 25 CIPKs proteins from MePPI-U were compared to yeast two-hybrid 
results71 (Fig. 4). The confusion matrix showed that 119 predicted interactions were supported by yeast 
two-hybrid, with 24 true positives and 95 true negatives. On the other hand, 81 predicted interactions could not 
match with Y2H data, with 23 false positives and 58 false negatives. Our predictions, in MePPI-U, showed high 
accuracy (0.6) and specificity (0.8) notwithstanding the size limitation of data used for the validation, which 
indicates its reliability.

Confidence scoring of MePPI-U.  The predicted PPIs in MePPI-U were assigned a confidence value (CV) 
score to represent the amount of collective information underlying the prediction (see Methods). The CV  score 

Figure 2.  Comparison of PPI prediction from interolog-based (MePPI-In6) and domain-based (MePPI-D6) 
methods. (a) interaction comparison and (b) protein comparison.

Descriptions MePPI from our previous work56 MePPI-U

Approaches Interolog-based method Interolog- and domain-based methods

Data sources Cassava genome V.4 Cassava genome V.6

7 plant templates 9 plant templates

DDI information V.1 DDI information V.2

Number of proteins in genome 34,151 41,381

Number of proteins in PPI network 7,209 24,590

Number of PPIs 90,173 3,638,916

Percent proteins coverage in genome 21 59

Table 1.  Comparison of cassava PPI networks between previous work56 and MePPI-U.
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7Scientific Reports |         (2020) 10:6510  | https://doi.org/10.1038/s41598-020-63536-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

ranges from 0 to 1, indicating low to high levels of confidence. Figure S6 showed that the majority of predicted 
PPIs in MePPI-U had a low CV  score, as shown by the positively skewed distribution in which only 95,203 PPIs 
had a CV > 0.5 (2.6 percent of total predicted PPIs). This was because most of the interolog-based PPI predic-
tions were computational from template species rather than by experimental measurements, and those by the 
domain-based method were mostly from proteins with a single domain. Accordingly, the factor M for the calcu-
lation of CVinterolog  and the correction factor d for the calculation of CVDDI were often 0.5, therefore, the highest 
CV  score in this network was 0.5. This CV  score should help contrast the reliability of each prediction based on 

collective support evidence. The predictions and CV value could be improved in the future as more data become 
available.

Topology and functional content of MePPI-U.  The MePPI-U showed scale-free properties as demon-
strated by the connectivity (k) of the proteins in the network, which followed a power-law distribution, 

γ−~P k k( ) . The observed topology suggested biological network characteristics of MePPI-U where most of the 
network constituents were linked by a few hub proteins (Fig. S7). The results correspond with the previously 
proposed interactome network of cassava56, although the size and coverage of the two networks differ. Similar 
topological characteristics were also observed in broad interactome networks of plants, including Arabidopsis22, 
rice23, sweet orange47 and tomato25. In MePPI-U, the top hub proteins included heat shock proteins (HSP) such as 
HSP70, HSP80 and HSP90, which are found in Arabidopsis22 and rice23 PPI networks as well as in MePPI-In4 
proposed by Thanasomboon et al.56.

With a great number of proteins, MePPI-U could extensively describe proteins and PPIs involved in biological 
functions. GO analysis of proteins in MePPI-U, presented in Figure S8, showed that the enriched biological pro-
cesses of PPIs were related to cellular protein metabolism, protein modification, post-translational modification, 
and protein phosphorylation. These results corresponded to the predominant molecular functions of the inter-
acting proteins involved in protein kinase activity. A comparison of the functional properties of MePPI-U and 

Figure 3.  The coverage of proteins in MePPI-U supported by expression data. All 24,590 proteins in MePPI-U 
were matched with published cassava protein and/or gene expression data49–54,62–70 to support their existence in 
MePPI-U.

Datasets Conditions* Organs Cultivars Platforms
Number of 
genes/ proteins

PPIs supported by 
co-expression**

Gene level

Amuge et al. (2017)69 CBSV infection (0 hr, 6 hr, 24 hr, 48 hr, 5 
dag, 8 dag,45 dag and 54 dag) leaf Namikonga 

and Albert RNA-seq 33,033 4,595

Wang et al.(2014)70 root development (75, 120 and 150 dap) storage root KU50, Arg7 RNA-seq 30,666 1,111

An et al. (2012)63 cold stress (7 °C at 0, 4 and 9 hr) apical shoot TMS60444 microarray 20,840 3

Li et al. (2010)64 development (60, 120, 210 and 300 dap) leaf, stem, 
root microarray 2,878 6

Protein level

Naconsie et al.(2016)49 root development (3, 6, 9 and 12 month) storage root KU50 2D-gel 67 6

4,742

Table 2.  Validation of predicted PPIs in MePPI-U through the consistence of cassava gene/protein expression 
profiles. * hr = hour, dag = days after grafting and dap = days after planting. ** Criteria: RNA-seq platform: 
expression ≥ 80 percentile, PCC > 0.99 and p-value <0.1. Microarray platform: expression ≥ 80 percentile, 
PCC > 0.90 and p-value <0.1.
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MePPI-In4
56 revealed greater numbers of biological processes covered by putative PPIs in MePPI-U, especially 

post-translational modification and signaling (Fig. 5).

Integrative interactome network and the inference of dynamic interaction unwiring and rewir-
ing PPI networks.  In living organisms, PPIs might occur only when the function of interacting proteins is 
needed76. While some PPIs stay intact till being triggered, many PPIs occur shortly and also change over time 
and environments77. The network of protein interaction is thus dynamically evolved by unwiring and rewiring of 
the interacting proteins, known as a dynamic PPI network (DPIN)78. A DPIN could be inferred from a reference 
interactome network by incorporating gene expression data, as information of state36,79. The integrative inter-
actome network presumably represents the timely protein-protein interaction by assuming that only expressed 
proteins could interact. The integrative MePPI-U network (MePPI-Ux) was constructed to investigate the 
DPIN of cassava. Figure 6 shows examples of MePPI-Ux constructed under biotic and abiotic stress conditions, 
based on the biotic and abiotic GO terms of proteins (GO:0009607 and GO:0009628 respectively). The biotic 
stress-related subnetwork contained 62 proteins (GO:0009607) with 1,493 inferred interactions, whereas the 
abiotic stress-related subnetwork contained 63 proteins (GO:0009628) with 301 inferred interactions (Fig. 6a). 
Thus, both subnetworks contained a similar number of proteins, but the constituent members and number of 
interactions differed. The DPINs of cassava under biotic and abiotic stresses were subsequently constructed by 
incorporating transcriptome data measured under cassava brown streak virus (CBSV) infection69 and drought 
stress68, denoted as MePPI-UxCBSV and MePPI-Uxdrought, respectively.

The inferred PPIs (iPPIs) in the biotic stress-related subnetwork differed from those in the normal condition 
(Fig. 6b,c, right panel). The integrative interactome subnetwork under CBSV infection (MePPI-UxCBSV) con-
sisted of 383 iPPIs and 32 proteins (Fig. 6c, right panel). The major latex protein-like protein 423 (MLP423; 
Manes.03G200500.1.p and Manes.15G008000.1.p) and major latex protein-like protein 28 (MLP28; Manes.
S038200.1.p)) were absent under CBSV stress conditions (Fig. 6b,c, right panel, red circle), resulting in the loss 
of 78 edges among MPL proteins in the network, such as MLP31, MLP43 and MLP328. The presence of abscisic 
acid receptor PYL12 (PYL12; Manes.03G115300.1.p) (Fig. 6b,c, right panel, red rectangle) introduced 57 more 
interactions from the normal condition, allowing linkages between PYL12, MPL and a serine/threonine phos-
phatase 2CHAB1 (HAB1; a serine/threonine phosphatase) to form. The MPL and HAB1 proteins were reported 
to be involved in the defense mechanisms of plants80,81, and in the dephosphorylation process that regulate cellu-
lar stress responses in eukaryotes82, respectively. Also, MPL and PYL proteins contain the Bet v1 domain in their 
sequences and are known to be involved in the defense process of Panax ginseng81 and birch pollen83. The findings 
corroborate a previous study that showed the knockdown of MPL-like protein expression resulted in increased 
susceptibility of cotton plants to Verticillium dahliaei infection80. Therefore, changes in protein interactions might 
be associated with the response of plants to infections.

The integrative interactome subnetwork under drought stress (MePPI-Uxdrought) composed of 255 iPPIs and 
54 proteins (Fig. 6c, left panel). Absence of the adenine nucleotide alpha hydrolases-like superfamily protein 

Figure 4.  Interactions of MeCBL and MeCIPK proteins by prediction and yeast two-hybrid (Y2H) system. 
The box color represents the results from prediction: red (interaction) and white (no interaction). The symbols 
represent the results from Y2H; + (interaction) and − (no interaction) from Y2H.
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(ANAH; Manes.03G204200.1.p) (Fig. 6b,c, left panel, red circle) impaired 4 edges, one of which represented 
self-interaction and the other three linked ANAH with thioredoxin H-type1 (TRXH1; Manes.01G141300.1.p), 
hypoxia responsive universal stress protein 1 (HRU1; Manes.02G080300.1.p) and universal stress protein (USP; 
Manes.08G082400.1.p), which have been linked to stress response in Sorghum bicolor(L.) Moench84. ANAH was 
identified as a putative stress responsive gene based on cis regulatory elements85, and the protein it encodes inter-
acts with several stress response proteins86,87. Accordingly, we hypothesized that ANAH may play role in con-
necting stress response proteins to makes them synchronously function under this particular condition. Relative 
to the normal condition, changes in MePPI-Uxdrought was subtler than in MePPI-UxCBSV subnetworks (Fig. 6b,c), 
which might indicate differences in the PPI-related regulatory process in response to the stress.

Insights into dynamic PPI network (DPIN) of starch biosynthesis through the integrative inter-
actome network.  Cassava is always valued based upon the yield of storage roots as well as starch content. 
However, these characters often vary according to changes in environmental conditions63,88,89, irrespective of 
the genetic similarity. An et al. (2013) showed the structure of chloroplasts in cassava leaves was affected by cold 
stress, which resulted in decreased thylakoid number and organization and loss of starch granules63. However, the 
total sugar content remained unchanged when compared to the control condition63. Based on these findings, it 
was indicated that cassava, a tropical crop adapted to warm climate, has cold responsive genes similar to temper-
ate plants (e.g. Arabidopsis). The results indicated that the ability of cassava to tolerate cold might not only be due 
to the amount of cold responsive genes, but might also involve other regulatory systems63. Here, the integrative 
interactome network was employed to study the influence of cold stress on the starch production process in cas-
sava, with respect to changes in iPPIs related to starch biosynthesis.

A total of 42 proteins were identified for the starch biosynthesis metabolic pathway. These proteins were clas-
sified into five groups: (1) phosphoglucomutase (PGM), (2) glucose-1-phosphate adenylyltransferase (AGPase), 
(3) starch synthase (SS), (4) 1,4 –alpha-glucan branching enzyme (SBE) and (5) 1,4 –alpha-glucan debranching 
enzyme (DBE). Within MePPI-U, 301 putative interactions of these 42 proteins were identified. (Fig. 7a, top 
panel). This suggests that metabolic proteins involved in the starch biosynthesis pathway well interact with each 
other, but mostly within the same group of functional proteins. Interactions of PGM, SS and AGPase proteins 
were all found within their own group, whereas interactions linking the two enzymatic groups were only found 
among SBE and DBE proteins. These results implied a close connection between SBE and DBE proteins while 
functioning in the starch biosynthesis process. As reported in amylopectin synthesis90, these interactions might 
be required to synthesize starch with precise molecular structure, which is crucial for starch granule formation.

The integrative interactome subnetwork of starch biosynthesis under cold stress was constructed by incorpo-
rating expression data68 into the MePPI-U network (Fig. 7a). Compared to the normal condition, interactions 
among cassava starch proteins seemed to change slightly once exposed to cold.The appearance of granule bound 
starch synthase 2 (GBSS2, Manes.02G001000.2.p) would introduce 17 more interactions (Fig. 7a, red circle). 
Additionally, we hypothesized that cold stress might not affect only the interactions between starch metabolic 
proteins, but might have an influence on how each of the starch genes might be regulated. To observed this, 
the integrative interactome subnetwork of starch protein regulators, i.e. transcription factors (TFs), was per-
formed (Fig. 7b). According to PlantTFDB database91, 144 transcription factors of the 42 starch proteins were 
inferred based on cis-regulatory element analysis. They included 7 major families, (1) ethylene response factor 

Figure 5.  Comparison of protein functions in cassava PPI networks, MePPI-In4
56 and MePPI-U, analysed based 

upon GO enrichment (p-value <0.05) in biological process class.
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protein (ERF), (2) Myb domain protein (MYB), (3) basic helix-loop-helix (bHLH) DNA-binding protein, (4) 
NAC domain containing protein, (5) basic-leucine zipper (bZIP) transcription factor protein (6) homeobox pro-
tein and (7) WRKY DNA-binding protein. In total, 687 putative PPIs among 144 TFs were found in MePPI-U 
(Fig. 7b). Under cold stress, changes in expression of seven TFs were observed. These included bHLH DNA bind-
ing protein (bHLH; Manes.01G269700.1.p), ERF transcription factor protein (ERF; Manes.16G034200.1.p), Myb 
domain protein 30 (Myb30;Manes.02G046100.1.p), Myb domain protein 96 (Myb96; Manes.06G092600.1.p), 
NAC containing protein (NAC;Manes.06G015000.1.p), NIN-like protein 5 (NIN5; Manes.05G130800.2.p) and 
OBF binding protein 4 (OBF4; Manes.06G080600.1.p). According to PlantTFDB, these TFs are involved in 

Figure 6.  Dynamic MePPI-U for different conditions: (a) abiotic and biotic stress-related subnetworks 
inferred from MePPI-U using GO information. Both subnetworks were integrated with expression data under 
CBSV infection (b) and drought stress (c). The nodes and edges represent proteins and their interactions, 
repectively. The node colors show proteins from abotic and biotic stress related subnetwork (orange) and 
percentile expression of proteins from highest (dark blue) to lowest (light blue) while the edge colors represent 
PPIs from both interolog- and domain- based prediction (black) or either interolog or DDI based method 
(grey). The circles and rectangles marked proteins that showed different interactions in MePPI-U of control 
and stress conditions. The number in orange boxes denote the following proteins; (1) adenine nucleotide 
alpha hydrolases-like superfamily protein (ANAH; Manes.03G204200.1.p), (2) thioredoxin H-type1 (TRXH1; 
Manes.01G141300.1.p), (3) hypoxia responsive universal stress protein 1 (HRU1; Manes.02G080300.1.p), 
(4) universal stress protein (USP; Manes.08G082400.1.p), (5) major latex protein-like protein 28 (MLP28; 
Manes.S038200.1.p), (6–7) major latex protein-like protein 423 (MLP423; Manes.03G200500.1.p and 
Manes.15G008000.1.p) and 8) abscisic acid receptor PYL12 (PYL12; Manes.03G115300.1.p).
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governing the transcription of AGPase, SS and ISA genes, i.e., bHLH controlling GBSS1, ERF controlling APS1-
2, Myb30 controlling ISA3 and APS1-1, Myb96 controlling ISA3, NAC controlling APS1-1 and APS1-2, NIN5 
controlling APL1-1 and SS3, and OBF4 controlling APL2-2 and SS2-1 (Table S2). The results suggested that cold 

Figure 7.  Dynamic starch and TF subnetworks in cold stressed condition. (a) starch subnetwork was classified 
into five functional groups; (1) phosphoglucomutase (PGM), (2) glucose-1-phosphate adenylyltransferase 
(AGPase), (3) starch synthase (SS), (4) 1,4 –alpha-glucan branching enzyme (SBE) and (5) 1,4 –alpha-glucan 
debranching enzyme (DBE). The red circle represents Manes.02G001000.2.p (GBSS2) protein that showed 
different interactions relative to control. (b) TFs related to the starch protein subnetwork were separated in 7 
groups; (1) ethylene response factor proteins (ERF), (2) Myb domain proteins (MYB), (3) basic helix-loop-
helix (bHLH) DNA-binding proteins, (4) NAC domain containing proteins, (5) basic-leucine zipper (bZIP) 
transcription factor proteins (6) homeobox proteins and (7) other TF proteins. The nodes represent starch 
(circle) and transcription factor (square) proteins, while the edges show the interactions. The node colors 
show percentile expression of proteins from highest (dark blue) to lowest (light blue), while the edge colors 
represent PPIs from both interolog and DDI based predictions (black), or either (grey). The alphabet in orange 
boxes denote the following TFs proteins; (A) ERF transcription factor protein (ERF; Manes.16G034200.1.p), 
(B) Myb domain protein 30 (Myb30;Manes.02G046100.1.p), (C) bHLH DNA binding protein (bHLH; 
Manes.01G269700.1.p), (D) NAC containing protein (NAC;Manes.06G015000.1.p), (E) NIN-like protein 5 
(NIN5; Manes.05G130800.2.p), (F) OBF binding protein 4 (OBF4; Manes.06G080600.1.p) and Myb domain 
protein 96 (Myb96; Manes.06G092600.1.p).
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stress might affect starch biosynthesis through changes in PPI-mediated regulation at the transcriptional regula-
tory level, especially when related to rate-limiting enzymatic proteins such as AGPase.

Besides investigating the DPIN underlying starch biosynthesis during cold stress condition, a similar study was 
performed to gain more insights into the interactome network of starch proteins in leaf and root tissues. Although 
starch is synthesized in both tissue types, the aim of the process is different. In leaves, starch is formed to allocate sugars 
obtained from the photosynthesis process, whereas starch in roots is synthesized for storage purpose. Different interac-
tions of starch proteins in these tissues were thus inferred, and the results are presented in Fig. 8. Integrative interactome 
networks of starch proteins in leaf (MePPI-UxSB,leaf) and root (MePPI-UxSB,root) tissues suggest a difference in AGPase 
protein interaction (Fig. 8b). AGPase is a complex heterotetrameric enzyme with 2 small and 2 large protein subunits 
required for starch biosynthesis. The expression of the small AGPase subunits (APS) in leaves and roots was comparable 
(with less than a two-fold change of percentile rank between both tissues), while the difference in the expression of the 
large subunits (APL) in both tissues was substantial (Fig. 8). These results corresponded to previous reports that the 
small subunits are primarily catalytic, while the large subunits are mainly regulatory92–94. The difference in APL genes 
expression may thus lead to distinct interactions that may be specific to each tissue type (Fig. 8, red circle and rectangle). 
Taken together, the integrative interactome network enabled us to envisage the changes in iPPIs underlying the pheno-
type under different conditions. The invloved PPIs inferred under specific conditions would provide useful information 
to identify protein complexes that would give us a clue of possible regulatory mechanism. Tang et al.(2011)79 showed 
that the protein complexes predicted from DPINs are more functionally coherent than those derived from a static PPI 
network. Moreover, DPIN is exploited to find the dynamic network biomarkers which can also be monitored at differ-
ent stages and time points during the development of diseases95.

Figure 8.  Starch PPI in leaves, fibrous roots and storage roots: (a) the starch subnetwork from MePPI-U and 
(b) the dynamic starch subnetwork in leaves, fibrous roots (FR) and storage roots (SR). The nodes and edges 
represent proteins and their interactions, repectively. The node colors show percentile expression of proteins 
from highest (dark blue) to lowest (light blue), while the edge colors represent PPIs from both interolog and 
DDI predictions (black), or either (grey).
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Conclusions
The interactome network of cassava was constructed by interolog-based and domain-based approaches to 
improve coverage of PPIs at the genome-wide level. The resulting network, named MePPI-U, contains 3,638,916 
putative PPIs interconnecting 24,590 proteins, which represents 59 percent of entire proteins in cassava, a 38 
percent increase from the previous network (MePPI-In4

56). Expression data were integrated into the MePPI-U 
to yield MePPI-Ux that suggests iPPIs under specific conditions. The MePPI-Ux was used to investigate 
condition-dependent PPIs under drought stress, cassava brown streak virus (CBSV) infection, and starch biosyn-
thesis in leaf and root tissues. MePPI-UxCBSV and MePPI-Uxdrought suggest iPPIs that could be involved in cassava 
response to stress. Moreover, MePPI-UxSB,leaf and MePPI-UxSB,root suggest the different interactions of enzymatic 
proteins between tissues may be modulated by interactions of their TF proteins. This integrative MePPI-U net-
work with expression data leads to more insights into PPI-related regulation that would help cassava starch 
improvement in both quality and quantity.

Received: 14 May 2019; Accepted: 1 April 2020;
Published: xx xx xxxx

References
	 1.	 Zhang, Y., Gao, P. & Yuan, J. S. Plant protein-protein interaction network and interactome. Curr. Genom. 11, 40–46 (2010).
	 2.	 Lu, C.-T. et al. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein 

post-translational modifications. Nucleic. Acids. Res. 41, D295–D305 (2012).
	 3.	 Jia, H. et al. Arabidopsis CROLIN1, a novel plant actin-binding protein, functions in cross-linking and stabilizing actin filaments. J. 

Biol. Chem. 288, 32277–32288 (2013).
	 4.	 Kappler, U. & Bailey, S. Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution 

structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J. Biol. Chem. 280, 
24999–25007 (2005).

	 5.	 Morell, M., Espargaró, A., Avilés, F. X. & Ventura, S. Detection of transient protein–protein interactions by bimolecular fluorescence 
complementation: The Abl‐SH3 case. Proteomics 7, 1023–1036 (2007).

	 6.	 Tetlow, I. J. et al. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein–protein 
interactions. Plant. Cell. 16, 694–708 (2004).

	 7.	 Qi, H. et al. TRAF family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in Arabidopsis. 
Plant. Cell. 29, 890–911 (2017).

	 8.	 Wang, X. et al. Regulation of COP1 nuclear localization by the COP9 signalosome via direct interaction with CSN1. Plant. J. 58, 
655–667 (2009).

	 9.	 Darie, C. C. et al. Identifying transient protein–protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. 
Proteomics. 11, 4514–4528 (2011).

	10.	 Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 415, 180–183 
(2002).

	11.	 Vaynberg, J. & Qin, J. Weak protein–protein interactions as probed by NMR spectroscopy. Trends. Biotechnol. 24, 22–27 (2006).
	12.	 Ohad, N., Shichrur, K. & Yalovsky, S. The analysis of protein-protein interactions in plants by bimolecular fluorescence 

complementation. Plant. Physiol. 145, 1090–1099 (2007).
	13.	 Rich, R. L. & Myszka, D. G. Higher-throughput, label-free, real-time molecular interaction analysis. Anal. Biochem. 361, 1 (2007).
	14.	 Lawit, S. J., O’Grady, K., Gurley, W. B. & Czarnecka-Verner, E. Yeast two-hybrid map of Arabidopsis TFIID. Plant Mol. Biol. 64, 

73–87 (2007).
	15.	 Huang, T.-W., Lin, C.-Y. & Kao, C.-Y. Reconstruction of human protein interolog network using evolutionary conserved network. 

BMC bioinformatics 8, 1 (2007).
	16.	 Wojcik, J. & Schächter, V. Protein-protein interaction map inference using interacting domain profile pairs. Bioinformatics 17, 

S296–S305 (2001).
	17.	 Ho, C.-L., Wu, Y., Shen, H.-b, Provart, N. J. & Geisler, M. A predicted protein interactome for rice. Rice. 5, 15 (2012).
	18.	 Middendorf, M., Ziv, E. & Wiggins, C. H. Inferring network mechanisms: the Drosophila melanogaster protein interaction network. 

PNAS. 102, 3192–3197 (2005).
	19.	 De Bodt, S., Proost, S., Vandepoele, K., Rouzé, P. & Van de Peer, Y. Predicting protein-protein interactions in Arabidopsis thaliana 

through integration of orthology, gene ontology and co-expression. BMC genomics. 10, 288 (2009).
	20.	 Geisler-Lee, J. et al. A predicted interactome for Arabidopsis. Plant. Physiol. 145, 317–329 (2007).
	21.	 Cui, J. et al. AtPID: Arabidopsis thaliana protein interactome database—an integrative platform for plant systems biology. Nucleic 

Acids Res. 36, D999–D1008 (2008).
	22.	 Brandão, M. M., Dantas, L. L. & Silva-Filho, M. C. AtPIN: Arabidopsis thaliana protein interaction network. BMC bioinformatics 10, 

1 (2009).
	23.	 Gu, H., Zhu, P., Jiao, Y., Meng, Y. & Chen, M. PRIN: a predicted rice interactome network. BMC bioinformatics 12, 1 (2011).
	24.	 Zhu, G. et al. PPIM: A protein-protein interaction database for Maize. Plant physiol. 170, 618–626 (2016).
	25.	 Yue, J. et al. PTIR: Predicted Tomato Interactome Resource. Sci. Rep. 6, 25047 (2016).
	26.	 Guo, Y., Yu, L., Wen, Z. & Li, M. Using support vector machine combined with auto covariance to predict protein–protein 

interactions from protein sequences. Nucleic Acids Res. 36, 3025–3030 (2008).
	27.	 Burger, L. & Van Nimwegen, E. Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian 

method. Mol. Syst. Biol. 4, 165 (2008).
	28.	 Rhodes, D. R. et al. Probabilistic model of the human protein-protein interaction network. Nat. Biotechnol. 23, 951–959 (2005).
	29.	 Jansen, R. et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453 

(2003).
	30.	 Xia, J.-F., Han, K. & Huang, D.-S. Sequence-based prediction of protein-protein interactions by means of rotation forest and 

autocorrelation descriptor. Protein. Pept. Lett. 17, 137–145 (2010).
	31.	 Lin, X. & Chen, X. W. Heterogeneous data integration by tree‐augmented naïve B ayes for protein–protein interactions prediction. 

Proteomics 13, 261–268 (2013).
	32.	 Huang, Y.-A., You, Z.-H., Chen, X., Chan, K. & Luo, X. Sequence-based prediction of protein-protein interactions using weighted 

sparse representation model combined with global encoding. BMC bioinformatics 17, 184 (2016).
	33.	 Shen, J. et al. Predicting protein–protein interactions based only on sequences information. PNAS. 104, 4337–4341 (2007).
	34.	 Guo, F., Ding, Y., Li, Z. & Tang, J. Identification of Protein–Protein Interactions by Detecting Correlated Mutation at the Interface. J. 

Chem. Inf. Model. 55, 2042–2049 (2015).
	35.	 de Lichtenberg, U., Jensen, L. J., Brunak, S. & Bork, P. Dynamic complex formation during the yeast cell cycle. Science 307, 724–727 

(2005).

https://doi.org/10.1038/s41598-020-63536-0


1 4Scientific Reports |         (2020) 10:6510  | https://doi.org/10.1038/s41598-020-63536-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

	36.	 Wang, J., Peng, X., Li, M. & Pan, Y. Construction and application of dynamic protein interaction network based on time course gene 
expression data. Proteomics 13, 301–312 (2013).

	37.	 Coen, E. S. & Meyerowitz, E. M. The war of the whorls: genetic interactions controlling flower development. Nature 353, 31 (1991).
	38.	 Favaro, R. et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant. Cell. 15, 2603–2611 

(2003).
	39.	 Sinha, A. K., Jaggi, M., Raghuram, B. & Tuteja, N. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant. 

Signal. Behav. 6, 196–203 (2011).
	40.	 D’angelo, C. et al. Alternative complex formation of the Ca2+‐regulated protein kinase CIPK1 controls abscisic acid‐dependent and 

independent stress responses in Arabidopsis. Plant. J. 48, 857–872 (2006).
	41.	 Taoka, K.-i et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332 (2011).
	42.	 Park, S. J. et al. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat. Genet. 46, 1337 

(2014).
	43.	 Prieto, C. & De Las Rivas, J. APID: agile protein interaction DataAnalyzer. Nucleic Acids Res. 34, W298–W302 (2006).
	44.	 Yu, Q. B. et al. Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in 

Arabidopsis thaliana. Cell Res. 18, 1007–1019 (2008).
	45.	 Lin, M., Shen, X. & Chen, X. PAIR: the predicted Arabidopsis interactome resource. Nucleic Acids Res. 39, D1134–D1140 (2011).
	46.	 Sapkota, A. et al. DIPOS: database of interacting proteins in Oryza sativa. Mol. Biosyst. 7, 2615–2621 (2011).
	47.	 Ding, Y.-D. et al. Prediction and functional analysis of the sweet orange protein-protein interaction network. BMC Plant Biol. 14, 1 

(2014).
	48.	 Food and Agriculture Organization of the United Nations, Save and grow: cassava a guide to sustainable production intensification. 

FAO http://www.fao.org/3/a-i3278e.pdf (2013).
	49.	 Naconsie, M. et al. Cassava root membrane proteome reveals activities during storage root maturation. J. Plant Res. 129, 51–65 

(2016).
	50.	 Zhao, P. et al. Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or 

continuing growth. J. Exp. Bot. 66, 1477–1488 (2014).
	51.	 Sheffield, J., Taylor, N., Fauquet, C. & Chen, S. The cassava (Manihot esculenta Crantz) root proteome: protein identification and 

differential expression. Proteomics. 6, 1588–1598 (2006).
	52.	 Li, K. et al. Proteome characterization of cassava (Manihot esculenta Crantz) somatic embryos, plantlets and tuberous roots. 

Proteome Sci. 8, 1 (2010).
	53.	 Mitprasat, M., Roytrakul, S., Jiemsup, S., Boonseng, O. & Yokthongwattana, K. Leaf proteomic analysis in cassava (Manihot 

esculenta, Crantz) during plant development, from planting of stem cutting to storage root formation. Planta 233, 1209–1221 (2011).
	54.	 Owiti, J. et al. iTRAQ‐based analysis of changes in the cassava root proteome reveals pathways associated with post‐harvest 

physiological deterioration. Plant J. 67, 145–156 (2011).
	55.	 Qin, Y. et al. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological 

deterioration. PloS one. 12, e0174238 (2017).
	56.	 Thanasomboon, R., Kalapanulak, S., Netrphan, S. & Saithong, T. Prediction of cassava protein interactome based on interolog 

method. Sci. Rep. 7, 17206 (2017).
	57.	 Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).
	58.	 Kerrien, S. et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2011).
	59.	 Chatr-Aryamontri, A. et al. MINT: the Molecular INTeraction database. Nucleic Acids Res. 35, D572–D574 (2007).
	60.	 Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2013).
	61.	 Finn, R. D., Miller, B. L., Clements, J. & Bateman, A. iPfam: a database of protein family and domain interactions found in the 

Protein Data Bank. Nucleic Acids Res. 42, D364–D373 (2014).
	62.	 Vanderschuren, H. et al. Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest 

deterioration. Plant. Cell. 26, 1913–1924 (2014).
	63.	 An, D., Yang, J. & Zhang, P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of 

tropical plant to cold stress. BMC genomics 13, 1 (2012).
	64.	 Li, Y.-Z. et al. An ordered EST catalogue and gene expression profiles of cassava (Manihot esculenta) at key growth stages. Plant Mol. 

Biol. 74, 573–590 (2010).
	65.	 Utsumi, Y. et al. Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: 

an important tropical crop. DNA Res. 19, 335–345 (2012).
	66.	 Yang, J., An, D. & Zhang, P. Expression Profiling of Cassava Storage Roots Reveals an Active Process of Glycolysis/GluconeogenesisF. 

J. Integr. Plant Biol. 53, 193–211 (2011).
	67.	 Wilson, M. C. et al. Gene expression atlas for the food security crop cassava. New Phytol. 213, 1632–1641 (2017).
	68.	 Li, S. et al. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci. Rep. 

7, 45981 (2017).
	69.	 Amuge, T. et al. A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan 

cassava brown streak virus. Sci. Rep. 7, 9747 (2017).
	70.	 Wang, W. et al. Cassava genome from a wild ancestor to cultivated varieties. Nature Commun. 5, 5110 (2014).
	71.	 Mo, C. et al. Expression patterns and identified protein-protein interactions suggest that cassava CBL-CIPK signal networks function 

in responses to abiotic stresses. Front. Plant Sci. 9, 269 (2018).
	72.	 Kotu, V. & Deshpande, B. Model Evaluation in Data Science (ed. Kotu, V. & Deshpande, B) 263–279. (Morgan Kaufmann, 2019).
	73.	 Lopes, C. T. et al. Cytoscape Web: an interactive web-based network browser. Bioinformatics. 26, 2347–2348 (2010).
	74.	 Du, Z., Zhou, X., Ling, Y., Zhang, Z. & Su, Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38, 

W64–W70 (2010).
	75.	 Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 6, 

e21800 (2011).
	76.	 Duan, X. J., Xenarios, I. & Eisenberg, D. Describing biological protein interactions in terms of protein states and state transitions: the 

LiveDIP database. Mol. Cell. Proteom. 1, 104–116 (2002).
	77.	 Przytycka, T. M., Singh, M. & Slonim, D. K. Toward the dynamic interactome: it’s about time. Brief. Bioinform. 11, 15–29 (2010).
	78.	 Wang, J., Peng, X., Peng, W. & Wu, F. X. Dynamic protein interaction network construction and applications. Proteomics 14, 338–352 

(2014).
	79.	 Tang, X. et al. A comparison of the functional modules identified from time course and static PPI network data. BMC bioinformatics 

12, 339 (2011).
	80.	 Yang, C. L. et al. Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against 

Verticillium dahliae. Mol. Plant 8, 399–411 (2015).
	81.	 Sun, H., Kim, M.-K., Pulla, R. K., Kim, Y.-J. & Yang, D.-C. Isolation and expression analysis of a novel major latex-like protein 

(MLP151) gene from Panax ginseng. Mol. Biol. Rep. 37, 2215–2222 (2010).
	82.	 Das, A. K., Helps, N. R., Cohen, P. & Barford, D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. 

The EMBO J. 15, 6798–6809 (1996).

https://doi.org/10.1038/s41598-020-63536-0
http://www.fao.org/3/a-i3278e.pdf


1 5Scientific Reports |         (2020) 10:6510  | https://doi.org/10.1038/s41598-020-63536-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

	83.	 Bufe, A., Spangfort, M. D., Kahlert, H., Schlaak, M. & Becker, W.-M. The major birch pollen allergen, Bet v 1, shows ribonuclease 
activity. Planta 199, 413–415 (1996).

	84.	 Katiyar, A. et al. Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench 
by high-throughput sequencing analysis. Front. Plant Sci. 6, 506 (2015).

	85.	 Shokri-Gharelo, R. & D.-D. M. a. N. P. Identification of Putative Osmotic Stress-Responsive Genes in Canola by in Silico Study of 
Cis-Regulatory Elements. Austin J. Comput. Biol. Bioinform. 3, 1–6 (2016).

	86.	 Sigoillot, S. M., Bourgeois, F., Lambergeon, M., Strochlic, L. & Legay, C. ColQ controls postsynaptic differentiation at the 
neuromuscular junction. J. Neurosci. 30, 13–23 (2010).

	87.	 Brody, M. S., Stewart, V. & Price, C. W. Bypass suppression analysis maps the signalling pathway within a multidomain protein: the 
RsbP energy stress phosphatase 2C from Bacillus subtilis. Mol. Microbiol. 72, 1221–1234 (2009).

	88.	 Santisopasri, V. et al. Impact of water stress on yield and quality of cassava starch. Ind. Crops Prod. 13, 115–129 (2001).
	89.	 Aina, O., Dixon, A. & Akinrinde, E. Effect of soil moisture stress on growth and yield of cassava in Nigeria. PJBS 10, 3085–9090 

(2007).
	90.	 Myers, A. M., Morell, M. K., James, M. G. & Ball, S. G. Recent progress toward understanding biosynthesis of the amylopectin 

crystal. Plant Physiol. 122, 989–998 (2000).
	91.	 Jin, J., Zhang, H., Kong, L., Gao, G. & Luo, J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription 

factors. Nucleic Acids Res. 42, D1182–D1187 (2013).
	92.	 Kavakli, I. H., Greene, T. W., Salamone, P. R., Choi, S.-B. & Okita, T. W. Investigation of subunit function in ADP-glucose 

pyrophosphorylase. Biochem. Biophys. Res. Commun. 281, 783–787 (2001).
	93.	 Crevillén, P., Ballicora, M. A., Mérida, Á., Preiss, J. & Romero, J. M. The different large subunit isoforms of Arabidopsis thaliana 

ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J. Biol. Chem. 
278, 28508–28515 (2003).

	94.	 Ballicora, M. A. et al. Adenosine 5 [prime]-Diphosphate-Glucose Pyrophosphorylase from Potato Tuber (Significance of the N 
Terminus of the Small Subunit for Catalytic Properties and Heat Stability). Plant Physiol. 109, 245–251 (1995).

	95.	 Wang, X. Role of clinical bioinformatics in the development of network-based. Biomarkers. J. Clin. Bioinf. 1, 28 (2011).

Acknowledgements
The authors would like to thank The National Center for Genetic Engineering and Biotechnology (BIOTEC, 
NSTDA) for R.T post-graduate scholarship. We gratefully acknowledge computing facility of Systems Biology and 
Bioinformatics research group, King Mongkut’s University of Technology Thonburi. This work was supported by 
the National Research Council of Thailand (NRCT) and National Science and Technology Development Agency 
(NSTDA) under Thailand Research Organizations Network (research grant: P-16-51275, P-17-51594 and P-17-
51609). Furthermore, we acknowledge the financial support provided by KMUTT through the KMUTT 55th 
Anniversary Commemorative Fund.

Author contributions
R.T. and T.S. conceived and designed experiments and performed the computational analysis. R.T., S.K. and T.S. 
analyzed the results and performed statistical ranking. All authors (R.T., S.K., S.N. and T.S.) discussed the results, 
wrote the manuscript, and approved the final version.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-63536-0.
Correspondence and requests for materials should be addressed to T.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-63536-0
https://doi.org/10.1038/s41598-020-63536-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Exploring dynamic protein-protein interactions in cassava through the integrative interactome network

	Methods

	Protein-protein interaction network construction. 
	Supporting MePPI-U with expression data. 
	Validation of MePPI-U with PPIs from yeast two-hybrid method. 
	Determination of confidence score. 
	Network topology and functional analysis. 
	Transcriptome data analysis and integration. 

	Results and Discussion

	Cassava protein-protein interaction network (MePPI-U). 
	Validation of MePPI-U with expression data and yeast two-hybrid study. 
	Confidence scoring of MePPI-U. 
	Topology and functional content of MePPI-U. 
	Integrative interactome network and the inference of dynamic interaction unwiring and rewiring PPI networks. 
	Insights into dynamic PPI network (DPIN) of starch biosynthesis through the integrative interactome network. 

	Conclusions

	Acknowledgements

	Figure 1 Overall methodology of PPI prediction in cassava consisting of two parts: (a) construction of protein-protein interaction network of cassava (MePPI-U) using interolog-based and domain-based approaches and (b) development of integrative interactom
	Figure 2 Comparison of PPI prediction from interolog-based (MePPI-In6) and domain-based (MePPI-D6) methods.
	Figure 3 The coverage of proteins in MePPI-U supported by expression data.
	Figure 4 Interactions of MeCBL and MeCIPK proteins by prediction and yeast two-hybrid (Y2H) system.
	Figure 5 Comparison of protein functions in cassava PPI networks, MePPI-In456 and MePPI-U, analysed based upon GO enrichment (p-value <0.
	Figure 6 Dynamic MePPI-U for different conditions: (a) abiotic and biotic stress-related subnetworks inferred from MePPI-U using GO information.
	Figure 7 Dynamic starch and TF subnetworks in cold stressed condition.
	Figure 8 Starch PPI in leaves, fibrous roots and storage roots: (a) the starch subnetwork from MePPI-U and (b) the dynamic starch subnetwork in leaves, fibrous roots (FR) and storage roots (SR).
	Table 1 Comparison of cassava PPI networks between previous work56 and MePPI-U.
	Table 2 Validation of predicted PPIs in MePPI-U through the consistence of cassava gene/protein expression profiles.




