
RESEARCH Open Access

Robust reconstruction algorithm for compressed
sensing in Gaussian noise environment using
orthogonal matching pursuit with partially known
support and random subsampling
Parichat Sermwuthisarn1, Supatana Auethavekiat1*, Duangrat Gansawat2 and Vorapoj Patanavijit3

Abstract

The compressed signal in compressed sensing (CS) may be corrupted by noise during transmission. The effect of
Gaussian noise can be reduced by averaging, hence a robust reconstruction method using compressed signal
ensemble from one compressed signal is proposed. The compressed signal is subsampled for L times to create the
ensemble of L compressed signals. Orthogonal matching pursuit with partially known support (OMP-PKS) is applied
to each signal in the ensemble to reconstruct L noisy outputs. The L noisy outputs are then averaged for
denoising. The proposed method in this article is designed for CS reconstruction of image signal. The performance
of our proposed method was compared with basis pursuit denoising, Lorentzian-based iterative hard thresholding,
OMP-PKS and distributed compressed sensing using simultaneously orthogonal matching pursuit. The experimental
results of 42 standard test images showed that our proposed method yielded higher peak signal-to-noise ratio at
low measurement rate and better visual quality in all cases.

Keywords: compressed sensing (CS), orthogonal matching pursuit (OMP), distributed compressed sensing, model-
based method

1. Introduction
Compressed sensing (CS) is a sampling paradigm that
provides the signal compression at a rate significantly
below the Nyquist rate [1-3]. It is based on that a sparse
or compressible signal can be represented by the fewer
number of bases than the one required by Nyquist theo-
rem, when it is mapped to the space with bases incoher-
ent to the bases of the sparse space. The incoherent
bases are called the measurement vectors. CS has a wide
range of applications including radar imaging [4], DNA
microarrays [5], image reconstruction and compression
[6-14], etc.
There are three steps in CS: (1) the construction of a

sparse signal, (2) the compression of a sparse signal, and
(3) the reconstruction of the compressed signal. The
focus of this article is the CS reconstruction of image
data. The reconstruction problem aims to find the spar-
sest signal which produces the compressed signal

(known as the compressed measurement signal). It can
be written as the optimization problem as follows:

argmin
s

‖s‖0 s.t. y = �s, (1)

where s and y are the sparse and the compressed
measurement signals, respectively; � is the random mea-
surement matrix having sampled measurement vectors
(known as random measurement vectors) as its column
vectors and ‖s‖0 is the ℓ0 norm of s. One of the ways
to construct � is as follows:

(1) Define the square matrix, �, as the matrix having
measurement vectors as its column vectors.
(2) Randomly remove the rows in � to make the row
dimension of � equal to the one of �.
(3) Set � to � after row removal.
(4) Normalize every column in �
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The optimization of ℓ0 norm which is non-convex
quadratically constrained optimization is NP-hard and
cannot be solved in practice. There are two major
approaches for problem solving: (1) basis pursuit (BP)
approach and (2) greedy approach. In BP approach, the
ℓ0 norm is relaxed to the ℓ1 norm [15-17]. The y = �s
condition becomes the minimum ℓ2 norm of y − �s.
When � satisfies the restricted isometry property (RIP)
condition [18], the BP approach is an effective recon-
struction approach and does not require the exactness
of the sparse signal. However, it requires high computa-
tion. In the greedy approach [19,20], the heuristic rule is
used in place of ℓ1 optimization. One of the popular
heuristic rules is that the non-zero components of s cor-
respond to the coefficients of the random measurement
vectors having the high correlation to y. The examples
of greedy algorithm are OMP [19], regularized OMP
(ROMP) [20], etc. The greedy approach has the benefit
of fast reconstruction.
The reconstruction of the noisy compressed measure-

ment signals requires the relaxation of the y − �s con-
straint. Most algorithms provide the acceptable bound
for the error between y and �s [17-26]. The error
bound is created based on the noise characteristic such
as bounded noise, Gaussian noise, finite variance noise,
etc. The authors in [17] show that it is possible to use
BP and OMP to reconstruct the noisy signals, if the
conditions of the sufficient sparsity and the structure of
the overcompleted system are met. The sufficient condi-
tions of the error bound in basis pursuit denoising
(BPDN) for successful reconstruction in the presence of
Gaussian noise is discussed in [21]. In [22], the Danzig
selector is used as the reconstruction technique. ℓ∞
norm is used in place of ℓ2 norm. The authors of [23]
propose using weighted myriad estimator in the com-
pression step and Lorentzian norm constraint in place
of ℓ2 norm minimization in the reconstruction step. It is
shown that the algorithm in [23] is applicable for recon-
struction in the environment corrupted by either Gaus-
sian or impulsive noise.
OMP is robust to the small Gaussian noise in y due to

its ℓ2 optimization during parameter estimation. ROMP
[20,26] and compressed sensing matching pursuit
(CoSaMP) [24,26] have the stability guarantee as the ℓ1-
minimization method and provide the speed as greedy
algorithm. In [25], the authors used the mutual coher-
ence of the matrix to analyze the performance of BPDN,
OMP, and iterative hard thresholding (ITH) when y was
corrupted by Gaussian noise. The equivalent of cost
function in BPDN was solved through ITH in [27]. ITH
gives faster computation than BPDN but requires very
sparse signal. In [28], the reconstruction by Lorentzian
norm [23] is achieved by ITH and the algorithm is
called Lorentzian-based ITH (LITH). LITH is not only

robust to Gaussian noise but also impulsive noise. Since
LITH is based on ITH, therefore it requires the signal
to be very sparse.
Recently, most researches in CS focus on the structure

of sparse signals and creation of model-based recon-
struction algorithms [29-35]. These algorithms utilize
the structure of the transformed sparse signal (e.g.,
wavelet-tree structure) as the prior information. The
model-based methods are attractive because of their
three benefits: (1) the reduction of the number of mea-
surements, (2) the increase in robustness, and (3) the
faster reconstruction.
Distributed compressed sensing (DCS) [33,35,36] is

developed for reconstructing the signals from two or
more statistically dependent data sources. Multiple sen-
sors measure signals which are sparse in some bases.
There is correlation between sensors. DCS exploits both
intra and inter signal correlation structures and rests on
the joint sparsity (the concept of the sparsity of the
intra signal). The creators of DCS claim that a result
from separate sensors is the same when the joint spar-
sity is used in the reconstruction. Simultaneously OMP
(SOMP) is applied to reconstruct the distributed com-
pressed signals. DCS-SOMP provides fast computation
and robustness. However, in case of the noisy y, the
noise may lead to incorrect basis selection. In DCS-
SOMP reconstruction, if the incorrect basis selection
occurs, the incorrect basis will appear in every recon-
struction, leading to error that cannot be reduced by
averaging method.
In this article, the reconstruction method for Gaussian

noise corrupted y is proposed. It utilizes the fact that
image signal can be reconstructed from parts of y,
instead of an entire y. It creates the member in the
ensemble of sampled y by randomly subsampling y. The
reconstruction is applied to reconstruct each member in
the ensemble. We hypothesize that all randomly sub-
sampled y are corrupted with the noise of the same
mean and variance; therefore, we can remove the effect
of Gaussian noise by averaging the reconstruction
results of the signals in the ensemble. The reconstruc-
tion is achieved by OMP with partially known support
(OMP-PKS) [34]. Our proposed method differs from
DCS in that it requires only one y as the input. It is
simple and requires no complex parameter adjustment.

2. Background
2.1 Compressed sensing
CS is based on the assumption of the sparse property of
signal and incoherency between the bases of sparse
domain and the bases of measurement vectors [1-3]. CS
has three major steps: the construction of k-sparse repre-
sentation, the compression, and the reconstruction. The
first step is the construction of k-sparse representation,
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where k is the number of the non-zero entries of sparse
signal. Most natural signal can be made sparse by apply-
ing orthogonal transforms such as wavelet transform,
Fast Fourier transform, discrete cosine transform. This
step is represented as

s = �Tx, (2)

where x is an N-dimensional non-sparse signal; s is a
weighted N-dimensional vector (sparse signal with k
nonzero elements), and � is an N × N orthogonal basis
matrix.
The second step is compression. In this step, the ran-

dom measurement matrix is applied to the sparse signal
according to the following equation.

y = �s = ��Tx, (3)

where � is an M × N random measurement matrix
(M < N). If � is an identity matrix, s is equivalent to x.
Without loss of generality, � is defined as an identity
matrix in this article. M is the number of measurements
(the row dimension of y) sufficient for high probability
of successful reconstruction and is defined by

M ≥ Cμ2(�,�)k log N, (4)

for some positive constant C. μ(�,�) is the coher-
ence between � and �, and defined by

μ(�,�) =
√
Nmax

i,j

∣∣〈φi,ψj
〉∣∣ . (5)

If the elements in � and � are correlated, the coher-
ence is large. Otherwise, it is small. From linear algebra,

it is known that μ(�,�) ∈
[
1,

√
N

]
[2]. In the mea-

surement process, the error (due to hardware noise,
transmission error, etc.) may occur. The error is added
into the compressed measurement vector as follows.

y = �s + e, (6)

where e is an M-dimensional noise vector.

2.2 Reconstruction method
The successful reconstruction depends on the degree
that � complies with RIP. RIP is defined as follows.

(1 − δk) ‖s‖22 ≤ ‖�s‖22 ≤ (1 + δk) ‖s‖22 , (7)

where δk is the k-restricted isometry constant of a
matrix � . RIP is used to ensure that all subsets of k col-
umns taken from � are nearly orthogonal. It should be
noted that � has more column than rows; thus, � can-
not be exactly orthogonal [2].

The reconstruction is the optimization problem to
solve (1). In (2), when � is an identity matrix, s is x.
Equation (1) can be rewritten as (8). Equation (8) is the
reconstruction problem used in this article.

argmin
x

‖x‖0 s.t. y = �x. (8)

The reconstruction algorithms used in the experiment
are BPDN, OMP-PKS, LITH, and DCS-SOMP. They are
described in the following sections.
2.2.1 BPDN
BP [15,16] is one of the popular ℓ1-minimization meth-
ods. The ℓ0-norm in (8) is relaxed to ℓ1-norm. It recon-
structs the signal by solving the following problem.

argmin
x

‖x‖1 s.t. y = �x. (9)

BPDN [21] is the relaxed version of BP and is used to
reconstruct the noisy y. It reconstructs the signal by sol-
ving the following optimization problem.

argmin
x

‖x‖1 s.t.
∥∥y − �x

∥∥
2 ≤ ε, (10)

where ε is the error bound.
BPDN is often solved by linear programming. It guar-

antees a good reconstruction if � satisfies RIP condition.
However, it has the high computational cost as BP.
2.2.2. OMP-PKS
OMP-PKS [34] is adapted from the classical OMP [19].
It makes use of the sparse signal structure that some
signals are more important than the others and should
be set as non-zero components. It has the characteristic
of OMP that the requirement of RIP is not as severe as
BP’s [26]. It has a fast runtime but may fail to recon-
struct the signal (lacks of stability). It has the benefit
over the classical OMP as it can successfully reconstruct
y even when y is very small (very low measurement rate
(M/N)). It is different from tree-based OMP (TOMP)
[30] in that the subsequent bases selection of OMP-PKS
does not consider the previously selected bases, while
TOMP sequentially compares and selects the next good
wavelet sub-tree and the group of related atoms in the
wavelet tree.
In this article, sparse signal is in wavelet domain,

where the signal in LL subband must be included for
successful reconstruction. All components in LL sub-
band are selected as non-zero components without test-
ing for the correlation. The algorithm for OMP-PKS
when the data are represented in wavelet domain is as
follows.
Input:

• An M × N measurement matrix,
� = [ϕ1,ϕ2,ϕ3, ...,ϕN]
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• The M-dimensional compressed measurement sig-
nal, y
• The set containing the indexes of the bases in LL
subbands, � = {γ1, γ2, ..., γ|�|}.
• The number of non-zero entries in the sparse sig-
nal, k.

Output:

• The set containing k indexes of the non-zero ele-
ment in x, 	k = {λi}, i = 1, 2, ..., k.

Procedure:
Phase 1: Basis preselection (initial step)

(a) Select every bases in LL subband.

t = |�|
	t = �

�t =
[
ϕγ1 ϕγ2 ... ϕγt

]
.

(b) Solve the least squared problem to obtain the
new reconstructed signal, zt.

zt = argmin
z

∥∥y − �tz
∥∥
2

(c) Calculate the new approximation, at, and find the
residual (error, rt). at is the projection of y on the
space spanned by �t.

at = �tzt
rt = y - at.

Phase 2: Reconstruction by OMP

(a) Increment t by one, and terminate if t > k.
(b) Find the index, λt, of the measurement basis, ϕj,
that has the highest correlation to the residual in the
previous iteration (rt−1).

λt = arg max
j=[1,N], j /∈	t−1

∣∣〈rt−1,ϕj
〉∣∣ .

If the maximum occurs for multiple bases, select one
deterministically.

(c) Augment the index set and the matrix of the
selected basis.

	t = 	t−1 ∪ {λt} and
�t =

[
�t−1 ϕλt

]
.

(d) Solve the least squared problem to obtain the
reconstructed signal, zt.

zt = argmin
z

∥∥y − �tz
∥∥ 2

(e) Calculate the new approximation, at, that best
describes y. Then, calculate the residual, rt, of the
current approximation.

at = �tzt
rt = y − at

(f) Go to step (a)

The reconstructed sparse signal, x̂ , has indexes of
non-zero components listed in 	k . The value of the
	kth component of x̂ equals to the λjth component of
zt. The termination criterion can be changed from t > k
to that rt−1 is less than the predefined threshold.
2.2.3. LITH
LITH [34] was proposed to reconstruct signals in the
presence of Gaussian and impulsive noise. It differs
from ITH in the usage of Lorentzian norm instead of ℓ2
norm. It reconstructs the signal according to the follow-
ing function.

argmin
x

∥∥y − �x
∥∥
LL2,α

s.t. ‖x‖0 ≤ k (11)

where ‖u‖LL2,α is Lorentzian norm (LLq norm with q

(tail parameter) = 2) of u and defined as follows.

‖u‖LL2,α = log
(
1 +

1
2

( u
α

)2
)
, (12)

where α is a scale parameter. The algorithm for LITH
is as follows.
Input:

• An M × N measurement matrix, �
• The M-dimensional compressed measurement sig-
nal, y
• The number of non-zero entries in the sparse sig-
nal, k.

Output:

• The reconstructed signal, x.

Procedure:
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(a) Set x(0) to zero vector and t to 0.
(b) At each iteration, x(t + 1) was computed by

x(t + 1) = Hk(x(t)) + μg(t)),

where Hk(a) is the nonlinear operator where the k lar-
gest components in a are kept but the remaining com-
ponents are set to zero. μ is the step size. In this article,
g is defined as follows.

g(t) = �TWt(y − �x(t)).

Wt is an M × N diagonal matrix. The diagonal ele-
ment in Wt is defined as

Wt(i, i) =
α2

α2 + (yi − �T
i x(t))

2 , i = 1, ....,M.

The step size is set as

μ(t) =

∥∥∥gk(t)(t)
∥∥∥2
2∥∥∥W1/2

t �k(t)gk(t)(t)
∥∥∥2
2

.

In case that
∥∥y − �x(t + 1)

∥∥
LL2,α

>
∥∥y − �x(t)

∥∥
LL2,α

,

μ(t) is set to 0.5μ(t).
(c) Terminate when the difference between �x and y
is less than or equal to the predefined error.

LITH is the fast and robust algorithm but it faces the
same problem as ITH. It requires that either x must be
very sparse or y must be very large (high measurement
rate). It is faster than OMP but with less stability.
2.2.4. DCS-SOMP
DCS uses the concept of joint sparsity, which is the
sparsity of every signal in the ensemble. It is used under
the environment that there are a number of y whose
original signals (x) are related. It has three models:
sparse common component with innovations, common
sparse support, and non sparse common component
with sparse innovations [31,33]. In this article, the com-
mon sparse support model is used. SOMP [31,36] is
proposed as the reconstruction algorithm. SOMP is
adapted from OMP.
DCS-SOMP searches for the solution that contains max-

imum energy in the signal ensemble. Given that the
ensemble of y is {yi}; i = 1, 2, ..., L. The basis selection cri-
terion in DCS-SOMP is changed from
λt = arg max

j=[1,N], j /∈	t−1

〈
rt−1,ϕj

〉
to λt = arg max

j=[1,N], j /∈	t−1

∑L

i=1

∣∣〈ri,t−1,ϕi,j
〉∣∣,

where ri,t−1 is the residual of yi to the projection of yi on
to the space spanned by �t−1. The rest of the procedure
remains the same as OMP. The indexes of non-zero com-
ponents in the reconstructed xi(i = 1, 2, ..., L) are the

same, but the value of non-zero components may differ. It
should be noted that when L is equal to one, the DCS-
SOMP is OMP.

3. Proposed method
This section addresses the problem of image reconstruc-
tion from Gaussian noise corrupted y. The block pro-
cessing is applied to reduce the computational cost.
Block processing and the vectorization of the wavelet
coefficients is described in Section 3.1. The proposed
reconstruction process from the ensemble of y is
explained in Section 3.2.

3.1 Block processing and the vectorization of the wavelet
coefficients
In this article, the image is sparsified by the octave-tree
discrete wavelet transform. Figure 1 shows an example of
block processing and vectorization of the wavelet coeffi-
cients. Figure 1a shows the structure of a wavelet trans-
formed image. The LL3 subband is shown in red. Other
subbands (LH, HL, and HH) in the third, the second, and
the first level are shown in green, orange, and blue, respec-
tively. The LL3 subband is the most important subband,
because it contains most of the energy in the image. Figure
1b shows the re-ordering of the wavelet coefficients. The
coefficients are ordered such that the LL3 subband is
located at the beginning of each row. The LL3 subband is
followed by the other subbands in the third, the second,
and the first level.
The wavelet-domain image in Figure 1b is divided into

blocks along its row as shown in Figure 1c. In Figure 1c,
the image has eight rows and is divided into eight
blocks. The signal can be made sparser by wavelet
shrinkage thresholding [37]. All coefficients in LL3 sub-
band are preserved. By using the wavelet shrinkage
thresholding, we can set most coefficients in the other
subbands to zero with little distinct visual degradation.
Each row in Figure 1c is considered as the sparse signal
for our study.
It should be noted that by experiments, it is found that

the vectorization according to the structure of Figure 1c
is better than the one by the lexicographic ordering. Fig-
ure 2 shows reconstruction examples when these two
vectorizations were used. The sparsity rate and the mea-
surement rate were set to 0.15 and 0.45, respectively. All
images were reconstructed using OMP-PKS. The top row
of each image shows the reconstruction when the vector-
ization in each block was done such that it had the struc-
ture as Figure 1c. The bottom row of each image shows
the reconstruction when the vectorization in each block
was done by lexicographic ordering. There is no fail
reconstruction (dark spot) in the top rows; whereas,
there are some in the bottom rows.
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3.2. Reconstruction
The reconstruction method is divided into three stages:
the construction of the ensemble of y, the reconstruc-
tion by OMP-PKS, and data merging.
3.2.1. Construction of the ensemble of y
Given that there are L different pM-dimension signals in
the ensemble of y. p is the ratio of the sampled signal’s
size to the original size. p and L are predefined. The ith
signal in the ensemble is denoted by yi. The algorithm
for constructing yi is as follows.
Input:

• An M × N measurement matrix, �
• The M-dimensional compressed measurement sig-
nal, y
• The dimension of yi, β = pM.

Output:

• The ith signal in the ensemble, yi.
• The truncated measurement matrix for yi, �i

Procedure:

(a) Create the set of β random integers,
R = {r1, r2, ..., rβ }, having the following properties.
For all j, l ∈ [1,β], rj ∈ [1,M] and rj = rl only if j = l.
(b) Construct yi by setting the jth component of yi
to the rjth component of y for all j ∈ [1,β].
(c) Construct �i, according to the following function.

For all j ∈ [1,β], set the jth row of �i to the rjth row
of �.
Figure 3 shows the result of applying the above proce-

dure for L times to create the ensemble of L sampled
signals. The total dimension of the ensemble is
pM × 1 × L. The ensemble is accompanied by L trun-
cated measurement matrices. The size of the truncated

matrix is pM × N. Since all yi’s are the parts of the
same y, their information is the same and they contain
Gaussian noise of the same mean and the same var-
iance. As long as the reconstruction does not use all sig-
nals in the ensemble at once, it is safe to assume that
reconstruction results from different yi contain different
noise.
3.2.2. Reconstruction by OMP-PKS
The reconstruction of the proposed algorithm has the
following requirements:

- the reconstruction of the signal at low measure-
ment rate (M/N),
- fast reconstruction,
- independent reconstruction result for each signal
in the ensemble.

The first requirement comes from the fact that the
reconstruction is performed on the sampled signal
which is smaller than y. The RIP is not always guaran-
teed. The second requirement is necessary because the
reconstruction must be performed L times (L is the
number of the signal in the ensemble). The third
requirement is the result of taking the information from
only one signal. By combining every sampled signal, ori-
ginal noisy y will be acquired. In the proposed algo-
rithm, the denoising by averaging is possible when each
yi has the distinct reconstruction result from one
another. Since each yi carries different set of the y’s
components, its total noise is different. Consequently,
the reconstruction on each yi gives the result having dif-
ferent noise corrupted to each pixel. The noise in each
pixel can be reduced by averaging.
Even though the reconstruction is performed on the

ensemble of y as DCS, DCS-SOMP is not applicable,
since it does not meet the third requirement. Any
greedy algorithms applied to each yi meet the second
and the third requirements. The measurement rate can

Figure 1 The example of block processing and vectorization. (a) The structure of the wavelet transformed image, (b) wavelet subbands
vectorization and reorganization, and (c) wavelet block.
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be kept low (the first requirement) by including the
model into the reconstruction. OMP-PKS [34] is chosen
in this algorithm, because its requirement for

measurement rate is low. The experiment in [34] shows
that the requirement of OMP-PKS was lower than
CoSaMP-PKS.

Figure 2 The reconstruction examples when the vectorization of the wavelet block is different. Types I and II indicate the vectorization
according to the structure in Figure 1c and the vectorization by lexicographic ordering, respectively. (a) Girl, (b) Jelly Beans, (c) Airplane (F-16),
and (d) Mandrill.
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OMP-PKS is applied to every yi in the ensemble and
forms L different sparse signals (wavelet coefficient). At
the end of this stage, there are L noisy images.
3.2.3. Data merging
L noisy images at the end of the reconstruction process
have noise that is similar to Gaussian noise (Figure 4). At
the same position, the noise in different reconstructed
images had distinctly different magnitude; consequently,
it can be reduced by taking the average at each pixel.
Because the average is not done in spatial domain, there-
fore the loss in spatial resolution is low. The denoising in
spatial domain can be done by using the conventional
denoising algorithms such as the Gaussian smoothing
model [38], the Yaroslavsky neighborhood filters and an
elegant variant [39,40], the translation invariant wavelet
thresholding [41], and the discrete universal denoiser
[42].

4. Experimental results
4.1. Experiment setup
The proposed method, OMP-PKS+random subsampling
(OMP-PKS+RS), was compared with BPDN, LITH,
OMP-PKS, and DCS-SOMP. The performance compari-
son was evaluated using 42 standard test images with
the size of 256 × 256 (available at http://decsai.ugr.es/
cvg/dbimagenes/index.php) as depicted in Figure 5.
Each image was transformed to the wavelet domain
using db8. The measurement matrix is Hadamard
matrix. Each wavelet image was divided into the block

of 1 × 256. The number of blocks was 256. The average
sparsity rate (k/N) of blocks in an image was 0.1. Peak
signal-to-noise ratio (PSNR) and visual inspection were
used for performance evaluation. All PSNRs shown in
the graph were average PSNRs.
Since the compression step in CS consists mostly of

linear operations, Gaussian noise corrupting the signal
in the earlier states is approximated as the Gaussian
noise corrupting the compressed measurement vector.
The state where the noise corrupted the image was not
specified; therefore, we simply corrupted the compressed
measurement vector by different level of Gaussian noise
indicated by its variance (σ 2).
The experiment consists of two parts: (1) the evalua-

tion for the required parameters (L and p) of OMP-PKS
+RS and DCS-SOMP in Section 4.2 and (2) the perfor-
mance evaluation in Section 4.3.

4.2. Evaluation for L and p
Both OMP-PKS+RS and DCS-SOMP require the ensem-
ble of y. We randomly subsampled y with the algorithm
described in Section 3.1 to create the ensemble. First, we
investigated for the size of the ensemble (L) and the size
of the signal in the ensemble for the optimum perfor-
mance of OMP-PKS+RS and DCS-SOMP. The size of
the signal in the ensemble was investigated in term of the
ratio to the size of y (p).
Figure 6 shows the PSNR of the reconstruction images

at different L and p. The measurement rate (M/N) was

Figure 3 The ensemble of compressed measurement vector and measurement matrix.
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set to 0.4. The solid line and the dashed line show the
PSNR of the reconstruction by DCS-SOMP and OMP-
PKS+RS, respectively. Figure 6a-d shows the PSNR
when the noise variance was 0.05, 0.1, 0.15, and 0.2,
respectively. The figures clearly show that the best per-
formance of OMP-PKS+RS was better than the one of
DCS-SOMP in all cases.
The line in the graph of Figure 6 was shown in differ-

ent color to represent p that was varied. The effect of p
was more pronounced in OMP-PKS+RS than in DCS-
SOMP. The maximum PSNR in OMP-PKS+RS was
achieved when p = 0.6 in all cases, while the maximum
PSNR in DCS-SOMP was achieved with different value
of p. When σ 2 were 0.05, 0.1, 0.15, and 0.2, the

optimum p for DCS-SOMP were 0.9, 0.6, 0.7, and 0.6,
respectively. No trend could be established for optimum
p in DCS-SOMP.
The x-axis in Figure 6 represents L. When L was

changed, the performance of DCS-SOMP was almost
unchanged. On the other hand, the performance of
OMP-PKS+RS was better, when L was larger. When
then noise was higher, OMP-PKS+RS required larger L
to achieve the optimum performance. In order to
achieve the best performance, OMP-PKS+RS required
the larger L than DCS-SOMP in all cases. In most cases,
DCS-SOMP and OMP-PKS+RS had already converged
to their optimum performance at L = 6 and 31,
respectively.

Figure 4 The reconstruction examples of yi.
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The optimum p and L at various M/N and various noise
levels were summarized in Tables 1 and 2, respectively. In
DCS-SOMP, the optimum p varied from 0.6 to 0.9. Out of
20 cases shown in the table, the optimum p was 0.7 in 10
cases. The result in Figure 6 indicated that p had little
effect to the PSNR, so p for DCS-SOMP was set to 0.7 in
Section 4.3. In OMP-PKS+RS, the optimum p varied from
0.6 to 0.8, note that in most cases (16 out of 20 cases) the
optimum p was 0.6. Even though p in OMP-PKS+RS had
more effect to the result’s PSNR than DCS-SOMP, it was
found that the PSNR difference between the best case and
p = 0.6 was less than 0.5 dB. Hence, p for OMP-PKS+RS
was set to 0.6 in Section 4.3.

From Table 2 the optimum L for DCS-SOMP was
always equal to 6; thus, L for DCS-SOMP was set to 6 in
Section 4.3. In OMP-PKS+RS, the optimum L varied from
21 to 36. Out of 20 cases shown in the table, the optimum
L was 31 in 10 cases. The optimum L for OMP-PKS+RS
was set to 31 in Section 4.3.

4.3. Performance evaluation
The performance of OMP-PKS+RS was compared with
the ones of BPDN, LITH, OMP-PKS, and DCS-SOMP
in this section. BPDN, LITH, and OMP-PKS used the
single y to reconstruct the result, while OMP-PKS+RS
and DCS-SOMP used the ensemble of y. The error

Figure 5 The test images.
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Figure 6 The average PSNR of reconstructed results by DCS-SOMP and OMP-PKS+RS at M/N=0.4 from y corrupted by Gaussian
noise at (a) σ 2=0.05, (b) σ 2=0.1, (c) σ 2=0.15, and (d) σ 2=0.2.
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bound of BPDN was set to σ 2. The value of a in LITH
was set to the optimum value of 0.25 [28].
4.3.1. Evaluation by PSNR
Figure 7a-d shows the PSNR when σ 2 was set to 0.05,
0.1, 015, and 0.2, respectively. Different reconstruction
methods are shown in different color. When M/N was
higher, better reconstruction was achieved in all cases.
However, the effect of the measurement rate to the per-
formance of OMP-PKS+RS was lower than the other
techniques.
Figure 7 also indicates that the proposed OMP-PKS

+RS was the most effective reconstruction at small M/N
(< 0.4). When M/N = 0.4 or higher, the PSNR acquired
by the reconstruction from OMP-PKS+RS and DCS-
SOMP was approximately the same. At σ 2 = 0.05 and
M/N = 0.6, all techniques achieved approximately the
same PSNR. However, when the noise was increased,
the reconstruction from the signal ensemble (OMP-PKS
+RS and DCS-SOMP) was better than the performance
of the reconstruction from one signal (BPDN, LITH,
and OMP-PKS) in all cases but at M/N = 0.2.
It should be noted that even though LITH was

designed for the reconstruction of noisy signal, its per-
formance was the worst in almost all cases. This was
due to its requirement of very sparse data (or very high
M/N). Its performance was still not converged at
M/N = 0.6; however, M/N could not be increased inde-
finitely. The major benefit of CS is the capability to
reconstruct the signal from small y, so the large M/N
will eliminate the CS benefit. For example, at the spar-
sity rate of 0.1, M/N = 0.5 would lead to y with the size
of 50% of the original image size. Such large compressed

image could be achieved by conventional image com-
pression techniques. Thus, it was rare that M/N could
be increased to 0.5 or larger.
Since OMP-PKS+RS and OMP-PKS used the same

reconstruction method, the PSNR difference between
OMP-PKS+RS and OMP-PKS indicated the PSNR
improvement by using the ensemble of y. The average
PSNR improvement was more than 1 dB in all σ 2. With
the exception of σ 2 = 0.05, the PSNR from OMP-PKS
+RS at M/N = 0.2 was higher than the one from OMP-
PKS at M/N = 0.6. It indicated that by using the ensem-
ble of signal, OMP-PKS+RS required lower M/N to
achieve the same performance level of OMP-PKS.
4.3.2. Evaluation by visual inspection
Images of Car, Pallons, and Elaine were used in this sec-
tion. Car was selected because it contains the sharp
edge. Pallons was selected because it has numbers of
smooth surface. Elaine was selected because it contains
a number of textures. Figure 8 shows the examples of
reconstruction results when M/N = 0.4 and σ 2 = 0.05.
The original images are shown in the first column. The
reconstruction results based on BPDN, LITH, OMP-
PKS, DCS-SOMP, and OMP-PKS+RS are shown in the
second, the third, the fourth, the fifth, and the sixth col-
umns, respectively. BPDN and LITH failed to recon-
struct some blocks as shown as dark dots (such as on
the car’s windshield in Figures 8(a2-3), the rightmost
balloon in Figures 8(b2-3)). Moreover, the results
showed that OMP-PKS, DCS-SOMP, and OMP-PKS+RS
successfully reconstructed every part. The smoothest
reconstruction was acquired from the proposed OMP-
PKS+RS. In all images, the change in the intensity

Table 1 The number of p which provided the highest PSNR

M/N

0.2 0.3 0.4 0.5 0.6

s2 DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

0.05 0.7 0.7 0.9 0.6 0.7 0.8 0.9 0.6 0.9 0.6

0.1 0.8 0.6 0.6 0.6 0.9 0.6 0.7 0.7 0.8 0.7

0.15 0.7 0.6 0.7 0.6 0.6 0.6 0.7 0.6 0.7 0.6

0.2 0.7 0.6 0.6 0.6 0.7 0.6 0.7 0.6 0.6 0.6

Table 2 The number of L at which the converged PSNR was guaranteed

M/N

0.2 0.3 0.4 0.5 0.6

s2 DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

0.05 6 21 6 21 6 31 6 31 6 31

0.1 6 21 6 21 6 31 6 31 6 31

0.15 6 21 6 21 6 31 6 36 6 31

0.2 6 21 6 21 6 31 6 36 6 31
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contrast was due to the normalization of the inverse
wavelet transform.
The PSNR performance of the proposed OMP-PKS

+RS and DCS-SOMP was very close; hence, further

visual investigation is performed. Figures 9, 10, and 11
showed the examples of reconstruction based on OMP-
PKS+RS and DCS-SOMP when σ 2 = 0.05, 0.1, 0.15, and
0.2 and M/N ≥ 0.4. The top and the bottom rows are

Figure 7 The average PSNR of reconstructed results when y is corrupted by Gaussian noise with (a) σ 2=0.05, (b) σ 2=0.1, (c)
σ 2=0.15, and (d) σ 2=0.2.
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the reconstruction based on DCS-SOMP and OMP-PKS
+RS, respectively. Although DCS-SOMP gave higher
PSNR, its result was noisy. The noise was reduced in
the reconstruction based on OMP-PKS+RS. The edge
was sharper and the uniform intensity regions were
smoother. For example, at σ 2 = 0.2 and M/N = 0.6, the
PSNR of the reconstructed Car based on DCS-SOMP

was 5.36 dB higher than the one based on OMP-PKS
+RS. But as Figure 9 indicated, the car’s body in the top
row was less smooth and the edge was more blurred.
Similar examples could be found in Figures 10 and 11.
Furthermore, DCS-SOMP failed to reconstruction some
blocks (shown as dark dots), while OMP-PKS+RS suc-
cessfully reconstructed every images.

Figure 8 Comparisons of the reconstructed images with M/N=0.4 and σ 2=0.05. From left to right, the image are original image,
reconstructed images based on BPDN, LITH, OMP-PKS, DCS-SOMP (p = 0.7, L = 6), and OMP-PKS+RS (p = 0.6, L = 31).
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4.3.3. Evaluation between OMP-PKS+RS and DCS-SOMP at
optimum L and p
The performance of OMP-PKS+RS and DCS-SOMP at
optimum L and p was compared, in this section. M/N

was set at 0.6 to ensure the best performance for DCS-
SOMP. Table 3 shows the PSNR of the reconstruction
results when p and L were set to the values in Tables 1
and 2, respectively. OMP-PKS+RS had at least 2.5 and 1

Figure 9 Comparisons of the reconstructed Car by DCS-SOMP (top row) and OMP-PKS+RS (bottom row) with M/N = 0.4, 0.5 and 0.6
at σ 2 = 0.05, 0.1, 0.15 and 0.2.
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dB higher PSNR at M/N = 0.2 and 0.3, respectively.
DCS-SOMP started to have the higher PSNR when
M/N was set larger than 0.4. The trend was the same as
the result in Section 4.3.1.

Figure 12 shows the reconstruction examples when L
and p were set according to Tables 1 and 2, respectively.
The top and the bottom rows of each image in Figure
12 show the reconstruction based on DCS-SOMP and

Figure 10 Comparisons of the reconstructed Pallons by DCS-SOMP (top row) and OMP-PKS+RS (bottom row) with M/N = 0.4, 0.5
and 0.6 at σ 2 = 0.05, 0.1, 0.15 and 0.2.
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OMP-PKS+RS, respectively. Even though the PSNRs of
some images in the top row were higher, the images in
the bottom row had sharper edge and smoother uniform
regions. Noise was less distinct in the reconstruction

based on OMP-PKS+RS. The result followed the same
trend as the result in Section 4.3.2.
By comparing Figure 12 with Figures 9, 10, and 11, we

found that the PSNR of some reconstructed images in

Figure 11 Comparisons of the reconstructed Elaine by DCS-SOMP (top row) and OMP-PKS+RS (bottom row) with M/N = 0.4, 0.5 and
0.6 at σ 2 = 0.05, 0.1, 0.15 and 0.2.

Sermwuthisarn et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:34
http://asp.eurasipjournals.com/content/2012/1/34

Page 17 of 21



Figure 12 was lower than Figures 9, 10, and 11. At

σ 2 = 0.2, the PSNR of the reconstructed Car based on
DCS-SOMP dropped from 24.61 dB (Figure 9) to 17.07
dB (Figure 12). The reconstructed image was also
degraded visually. On the other hand, the reconstructed
Car based on OMP-PKS+RS at σ 2 = 0.1 had 2.31 dB
lower PSNR but the visual quality was approximately
the same. The PSNR and visual quality drop were also
found in other images but with less degree (e.g., the
reconstruction of Pallons based on DCS-SOMP at

σ 2 = 0.2).
The PSNR drop was caused by the variance of the

best p among test images. The visual quality of the
reconstruction based on OMP-PKS+RS was approxi-
mately the same but the one based on DCS-SOMP
dropped drastically in some cases. Consequently, it was
possible to use one p for every image in OMP-PKS+RS
but p must be determined image by image in DCS-
SOMP.
From the comparison between OMP-PKS+RS and

DCS-SOMP, it could be concluded that though OMP-
PKS+RS produced the results with less PSNR than
DCS-SOMP in some cases, the results had better visual
quality. Furthermore, the parameter adjustment in
OMP-PKS+RS was easier.
The reason behind the noise reduction was because

the reconstruction based on OMP-PKS+RS produced
different result for difference signal in the ensemble;
therefore, the noise in each pixel could be reduced by
averaging the intensity among signals in the ensemble.
On the other hand, DCS-SOMP tried to find one result
for every signal in the ensemble. Because the ensemble
came from only one signal; hence, the noise was the
same and the noise went directly to the result.

5. Conclusions
This article proposed the robust CS reconstruction algo-
rithm for image with the presence of Gaussian noise.
The proposed algorithm, OMP-PKS+RS, firstly applied
random subsampling to create the ensemble of L
sampled signals. Then OMP-PKS was used to recon-
struct the signal. The Gaussian denoising was performed
by averaging the image reconstruction of every signal in

the ensemble. The experiment shows that by using the
ensemble of signal, the proposed algorithm improved
the PSNR of the original OMP-PKS by at least 0.34 dB.
Moreover, the proposed algorithm was efficient in
removing the noise when the compression rate was high
(small measurement rate). For future work, we plan to
add the impulsive noise model into OMP-PKS+RS to
develop the reconstruction algorithm that is robust to
both impulsive and Gaussian noises.

Appendix 1: Computational costs of OMP, OMP-
PKS, OMP-PKS+RS, and DCS-SOMP
The computational costs of OMP, OMP-PKS, OMP-PKS
+RS, and DCS-SOMP are investigated. The variables are
the same as in Sections 2 and 3. The number of multi-
plication and the one of ℓ2 optimization are used to
measure the computational cost. The computational
cost of the tth iteration in the classic OMP is summar-
ized in Table 4. The first |�| iterations in OMP are
replaced by the basis preselection in OMP-PKS. The
computational cost of the basis preselection is summar-
ized in Table 5. The total computational costs of OMP
and OMP-PKS for a k-sparse signal are as follows:

The number ofmultiplication inOMP =
k∑
t=1

(MN +M) (13)

The number of �2 optimization inOMP =
k∑
t=1

(�2 optimization for t variables) (14)

The number ofmultiplication inOMP − PKS =
k∑

t=|�|+1
(MN +M) + |�| (15)

The number of �2 optimization inOMP−PKS =
k∑

t=|�|
(�2 optimization for t variables) (16)

From (13) to (16), it can be concluded that OMP-PKS
reduces the computational cost of OMP in two aspects.

(1) The number of multiplication of the first |�|th
loops is reduced from (MN +M)|�| to |�|.
(2) The ℓ2 optimization in the first (|�| − 1) itera-
tions is removed.

Table 3 The average PSNR when p and L were set according to Tables 1 and 2, respectively

M/N

0.2 0.3 0.4 0.5 0.6

s2 DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

DCS-
SOMP

OMP-PKS
+RS

0.05 10.00 19.96 19.51 21.23 21.72 21.72 21.64 22.65 23.39 24.21

0.1 14.03 18.41 17.31 18.79 19.01 19.55 18.77 19.92 20.97 20.83

0.15 13.54 17.27 16.63 17.64 17.65 18.65 18.34 17.82 19.93 19.15

0.2 13.65 16.21 15.20 16.57 16.70 16.44 17.46 16.86 18.31 17.75
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Figure 12 Comparisons of reconstructed images by DCS-SOMP (top row) and OMP-PKS+RS (bottom row) when p and L was set
according to Tables 1 and 2, respectively. M/N was set to 0.6.

Table 4 The computational cost of the tth iteration in OMP

Step The number of multiplication The number of ℓ2 optimization

(1) λt = arg maxj /∈	t

∣∣〈rt−1,ϕj
〉∣∣ . M(N-t+1) -

(2) at = Ftzt Mt -

(3) zt = arg minz||y-Ftzt-1||2 - ℓ2 optimization for t variables

Total MN+M ℓ2 optimization for t variables
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In OMP-PKS+RS, the size of yi is reduced from M to
pM. The reconstruction is performed L times. Therefore,
the total computational time of OMP-PKS+RS is L
times the reconstruction of OMP-PKS, where M is
replaced by pM. In DCS-SOMP, the computational cost
of the tth iteration is summarized in Table 6.
The total computational costs of OMP-PKS+RS and

DCS-SOMP for k-sparse signal are as follows.

The number ofmultiplication inOMP − PKS + RS = L
[
p(MN +M)(k − �) + |�|] (17)

The number of �2 optimization inOMP−PKS + RS = L
k∑

t=|�|
(�2 optimization for t variables) (18)

The number ofmultiplication inDCS − SOMP = Lp
[
(MN +M)k

]
(19)

The number of �2 optimization inDCS - SOMP = L
k∑
t=1

(�2 optimization for t variables) (20)

From (15) to (18), it can be concluded that the com-
putational cost of OMP-PKS+RS is approximately pL
times the cost of OMP-PKS. From (13), (14), (19) and
(20), it can be concluded that the computational cost of
DCS-SOMP is pL times the cost of OMP. Since both
OMP-PKS+RS and DCS-SOMP reconstruct the ensem-
ble of signals, their computational costs are higher than
OMP and OMP-PKS.
From (17) to (20), it can be concluded that at the

same L and p, the cost of OMP-PKS+RS is lower than
DCS-SOMP because of the usage of OMP-PKS. How-
ever, it was found that the optimum L and p in OMP-
PKS+RS and DCS-SOMP were different. The product of
pL was much higher in OMP-PKS+RS, so OMP-PKS+RS
had the highest computational cost. The effect of higher
computing cost in OMP-PKS+RS can be reduced by
parallel processing, because the reconstruction of each
signal in OMP-PKS+RS can be done separately.

Table 5 The computation cost of the basis preselection in OMP-PKS

Step The number of multiplication The number of ℓ2 optimization

(1) zt = arg minz||y-Ftzt-1||2 - ℓ2 optimization for |�| variables
(2) at = Ftzt |�| -

Total |�| ℓ2 optimization for |�| variables

Table 6 The computation cost of the tth iteration in DCS-SOMP

Step The number of multiplication The number of ℓ2 optimization

(1) λt = arg maxj=1,...,N

L∑
l=1

∣∣〈rl, t−1,ϕj
〉∣∣ . LpM(N-t+1) -

(2) at = Ftzt LpMt -

(3) zt = arg minz||y-Ftzt-1||2 - L(ℓ2 optimization for t variables)

Total Lp(MN+M) L(ℓ2 optimization for t variables)

Table 7 The total computational cost of the reconstruction of a k-sparse signal by OMP, OMP-PKS, OMP-PKS+RS, and
DCS-SOMP

Method The number of multiplication The number of ℓ2 optimization

OMP (MN + M)k

k∑
t=1

(�2 optimization for t variables)

OMP-PKS (MN + M)(k-|Γ|) + |Γ|

k∑
t=|�|

(�2 optimization for t variables)

OMP-PKS+RS L[p(MN + M)(k - |Γ|) + |Γ|] L
k∑

t=|�|
(�2 optimization for t variables)

DCS-SOMP Lp[(MN + M)k] L
k∑
t=1

(�2 optimization for t variables)
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Table 7 summarizes the computational cost of the
four methods, when they are applied to reconstruct a
k-sparse signal in Section 4.
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