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Abstract

Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited
by complexity and cost, hindering their widespread application. The objective of this proof of
concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as
a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular
detection of MDR-TB. The NALF device was designed using antibodies for the indirect
detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the
simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot
region of the rooB gene (rifampicin resistance), while semi-nested PCR was optimized for
the S315T mutation detection in the katG gene (isoniazid resistance). The amplification pro-
cess additionally targeted a conserved region of the genes as Mycobacterium tuberculosis
(Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT)
Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes.
Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant)
Mtb isolates, with the least limit of detection (LOD) being 10* genomic copies per PCR reac-
tion. NALF is a simple, rapid and low-cost device suitable for low resource settings where
conventional PCR is already employed on a regular basis. Moreover, the use of antibody-
based NALF to target primer-labels, without the requirement for DNA hybridization, renders
the device generic, which could easily be adapted for the molecular diagnosis of other infec-
tious and non-infectious diseases requiring nucleic acid detection.

Introduction

Multidrug-resistant tuberculosis (MDR-TB) is defined by the resistance of Mycobacterium
tuberculosis (Mtb) to at least the two most potent antimicrobials against TB infection,
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rifampicin (RIF) and isoniazid (INH) [1]. According to the WHO drug resistant TB surveil-
lance report of 2014, MDR-TB occurred in 3.5% of new TB cases and 20.5% in previously diag-
nosed TB cases, with the incidence of MDR-TB estimated to be 5% of the overall TB cases on a
global scale [2]. Every year, at least half a million new cases continue to emerge, adding to the
existing MDR-TB burden [2]. The traditional culture based drug susceptibility testing (DST)
remains the primary diagnostic platform in most developing countries. The consequent diag-
nostic time-delay is a major cause of escalating incidence. The key to preventing further spread
is early detection and treatment.

A range of molecular diagnostic methods have been introduced into developing countries
through the endorsement of the WHO [3,4]; however, several limitations hamper their popu-
larity. The foremost drawback to molecular tests such as real-time PCR is the associated
expense. Even though technologies like Xpert MTB/RIF (Cepheid, USA), a real-time PCR
based detection system first endorsed by the WHO in 2010 [3], is sensitive enough to detect
MDR-TB in HIV infected patients [5-7], the widespread use is unaffordable. Other molecular
tests are largely PCR based endpoint detection systems such as INNO-LiPA Rif (Innogenetics,
Belgium) and GenotypeMTBDRplus (Hains Lifesciences, Germany) that are DNA based strip
tests. The test strips are lined with a wide array of mutation specific detection probes [8], which
complicates result presentation. This strip design feature may be suitable for epidemiological
surveys, but potentially impedes their practical use in routine diagnostics.

The primary objective of this proof of concept study was to develop a molecular diagnostic
alternative for MDR-TB, targeting low-resource and peripheral healthcare settings that already
routinely perform nucleic acid amplification. The aim was to create a highly simple, rapid, and
easy-to-use detection tool, and to optimize its compatibility with conventional thermocycling
technology. This limits the requirement for additional expenditure on instruments. The detec-
tion device developed is a one-step antibody-based Nucleic Acid Lateral Flow (NALF) immu-
noassay designed for the selective detection of specifically labeled nucleic acid within a PCR
amplicon mixture.

The target Mtb genes for the PCR-NALF test in this study are rpoB, with mutations conferring
RIF resistance [9,10], and katG, with mutations conferring INH resistance [11]. RpoB and katG
mutation detection has been divided into two separate assays. Multiplex PCR was optimized for
the rpoB assay, allowing for a simultaneous detection of multiple RIF resistance determining
codons (531, 526 and 516) within the rpoB gene. Site- and mutation-specific primers for rpoB
were designed and combined into one single assay. At any one time, only the primer specific to
the mutation type binds to the target, from the multitude of primers, to register RIF resistance.
This design strategy is practical because a simultaneous occurrence of more than one drug resis-
tance conferring mutation in a single gene is uncommon. For the katG assay, semi-nested PCR
was optimized for the detection of a single mutation (S315T), to register INH resistance. Primers
were designed and evaluated in this study for their performance in identifying mutant (MT) tem-
plates, corresponding to drug resistant Mtb isolates, and the H37Rv wild-type (WT) template,
corresponding drug susceptible Mtb isolate. All synthesized primers were labeled with specific
tags for a rapid and easy detection by NALF antibodies. Both rpoB and katG assays follow the
same test protocols, including the same thermocycling conditions. All NALF results were com-
pared with the results of agarose gel electrophoresis for laboratory evaluation.

Materials and Methods
Template Preparation

Genomic DNA extracts from Mtb isolates (Table 1) were obtained from the Drug Resistant
Tuberculosis Fund Laboratory, Department of Microbiology, Faculty of Medicine Siriraj
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Hospital, Mahidol University, Thailand. Outer primers were designed, using NCBI Primer-
BLAST [12], to obtain specific regions of the target genes; RpoB-OF (5-CGCTGTTGG
AAAACTTGTTC-3’), RpoB-OR’ (5-CTCCAGGAAGGGAATCATCG-3’), and KatG-OF (5’
GGCGGACCTGATTGTTTTCG-3’), KatG-OR’ (5-GAGACAGTCAATCCCGATGC-3).
The amplified products of the target genes were ligated with pGEM T-Easy Vector (Promega,
USA) (Table 1) and incubated overnight at 4°C, as per the protocol provided by the manufac-
turer. Competent E. coli DH5-o. cells were transformed with the ligated plasmids and then
grown on LB agar culture plate containing ampicillin, IPTG, and X-gal at 37°C overnight (16—
18 hrs) for blue/white selection. The white colonies were picked and inoculated in LB broth
with ampicillin and incubated overnight (12-16 hrs) at 37°C, with vigorous shaking (250 rpm).
The overnight grown bacterial culture was then used for extracting the plasmid DNA (pDNA),
using a plasmid extraction mini-kit (Favorgen, Taiwan). The presence of inserted genes was
confirmed using restriction enzyme EcoR1-HF and by DNA sequencing (First Base, Singa-
pore). Stocks of plasmids in DH5-a. E. coli cells were made in 50% glycerol and stored at -80°C.
The stored E. coli cells were regrown in LB broth (ampicillin) and pDNA extracted for use
(mini-kit, Favorgen). The concentrations of the extracted pPDNA were measured using a spec-
trophotometer (NanoDrop 8000, Thermo Scientific, USA).

PCR Amplification

Amplification of the target genes, rpoB (locus Rv0667) and katG (locus Rv1908c) [13,14], were
performed in two separate assays using labeled primers (Table 2). For the rpoB assay, RpoB-IF’
and RpoB-IR’ (Table 2) were designed to amplify a conserved region within the rpoB gene as
Mtb DNA control. A set of rpoB mutant primers (forward) (Table 2) [15], together with Rpo-
B-IR’, were also designed for specific mutation detection to determine Mtb RIF resistance in
the rpoB assay. For the katG assay, KatG-IF" and KatG-IR’ (Table 2) were designed for the
amplification of a conserved region within the katG gene as Mtb DNA control, together with
315T-F (katG mutant forward) and KatG-IR’ (Table 2), designed for the S315T mutation
detection to determine Mtb INH resistance in the katG assay (Table 2). RpoB-IF” and Rpo-
B-IR’, as well as KatG-IF and KatG-IR’ have also been designed to recognize a conserved
region within the rpoB and katG genes, within the Mycobacterium tuberculosis complex

Table 1. Bacteria and plasmid; source and function in template preparation.

Material

Mtb genomic DNA
extracts with known
mutations

Mtb genomic DNA
extracts with known
mutations

Mtb genomic DNA
extracts with known
mutations

Mtb genomic DNA
extracts with known
mutations

Mtb reference strain

pGEM T-Easy Vector

E. coli

Type

bacteria

bacteria

bacteria

bacteria

bacteria

plasmid
DNA

bacteria

doi:10.1371/journal.pone.0137791.1001

Gene

rpoB

rpoB

rpoB

katG

genome

Codon Mutation type Mtb Strain Source/ Function
Strain
516 (D) Asp to Val (V) DS 10216, DS 3315, DS clinical for target gene
6279, DS 4230 isolates amplification
526 (H) His to Tyr (Y), (H) His to DS 6308, DS 8417, DS clinical for target gene
Arg (R), (H) His to Asp (D), 5904, DS 0502, DS 4224, isolates amplification
(H) His to Leu (L) DS 9442, DS 6646
531 (S) Serto Leu (L) DS 9469, DS 6354, DS clinical for target gene
6088, DS 6000 isolates amplification
315 (S) Ser to Thr (T) DS 12791, DS 11964, DS clinical for target gene
10477, DS 12168 isolates amplification
- - H37Rv experimental
control
- - commercial  target gene
cloning
- - DH5-a host cell
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Table 2. Primers used in PCR amplification for the detection of INH and RIF resistance.

Primer Label-Sequence Conc. (pM) Product Length (bp)
katG primers (for the detection of INH resistance)

KatG-IF’ DIG-AGCGGTAAGCGGGATCTGGAGAA 0.25 630

KatG-IR’ Biotin-CATGTCTCGGTGGATCAGCTTGTA 0.25

315T-F FITC-GTAAGGACGCGATCACCAc 0.1 335

rpoB primers (for the detection of RIF resistance)

RpoB-IF’ DIG-GGAGGCGATCACACCGCAGACGT 0.1 314

RpoB-IR’ Biotin-TTTCGATGAACCCGAACG

Single mutation (SM) primers
SM-516V-F’

SM-526Y-F’

SM-526D-F’

SM-526R-F’

SM-526L-F

SM-531L-F

Double mutation (DM) primers?
DM-516V-F’

DM-526Y-F’

DM-526D-F

DM-526R-F’

DM-526L-F

DM-531L-F’

Reference
a[15].

doi:10.1371/journal.pone.0137791.t002

FITC-CTGAGCCAATTCATGGt 1 235
FITC-GTCGGGGTTGACCt 1 203
FITC-GTCGGGGTTGACCg 1 203
FITC-GTCGGGGTTGACCCg 1 203
FITC-GTCGGGGTTGACCCt 1 203
FITC-ACAAGCGCCGACTGTt 1 189
FITC-CTGAGCCAATTCATIGt 1 235
FITC-GTCGGGGTTGACatA 1 203
FITC-GTCGGGGTTGACagA 1 203
FITC-GTCGGGGTTGACaCg 1 203
FITC-GTCGGGGTTGACaCt 1 203
FITC-ACAAGCGCCGACTaTt 1 189

(MTBC). All primers were designed using NCBI Primer-BLAST [12]. For the rpoB assay,
individual forward primers targeting rpoB codons 531, 526 and 516 were first experimented
separately to evaluate their efficacy and stringency. The individual rpoB primers were then
combined into one single assay for multiplex PCR, for the simultaneous detection of all three
codons. For the katG assay, a single forward primer (315T-F’) targeting the S315T mutation
was combined with KatG-IF" and KatG-IR’ for semi-nested PCR. All tests were initially per-
formed using pDNA, with a concentration of 10° copies (1 ng) added per PCR reaction. The
experimental conditions were optimized for primer concentrations and amplification parame-
ters. The optimized conditions were validated with Mtb isolates with known mutations; for
the rpoB gene, 4 isolates for codon 516, 6 for codon 526, and 4 for codon 531 were used for
the validation of the rpoB assay, and for the katG gene, 4 isolates with S315T mutation were
used for the validation of the katG assay (Table 1). The rpoB and the katG assays were also vali-
dated with the H37Rv WT Mtb isolate. For each PCR reaction, 10> DNA copies (1 ng) of geno-
mic DNA extracts from Mtb isolates were added. PCR was performed in 25 pl reaction
mixtures containing commercial 10x PCR buffer (composition of 1x buffer; 7.5 mM Tris-HCl
(pH 8.75), 25 mM KCI, 1 mM MgCl,), 100 uM dNTP mix, 1 U Taq DNA Polymerase (Gen-
eaid, Taiwan), and 1 ng purified pDNA/ 1 ng Mtb genomic DNA as amplification template.
RpoB and katG assays were subjected to the same thermocycling conditions; initial denatur-
ation at 95°C for 5 min, followed by 5 cycles of 94°C for 1 min and 72°C for 1 min, then 30
cycles of 94°C for 1 min, 63°C for 1 min, and 72°C for 1 min, with a final extension at 72°C for
7 min (T-Professional Thermocycler, Biometra, Germany). For each experiment, the negative
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A

\RpoB-IF’ \ 516-F’ \526-F" \531-F’ \ KatG-IF’ \ 315T-F

Wild-type GAC CAC

Mutant (V) GTC  (Y) TAC
(R) CGC
(D) GAC
(L)CcTC

; \ Wild-type AGC
RpoB-IR’ { KatG-IR’ \

Mutant ACC

PCR product size

PCR product size
630 bp

335 bp

Fig 1. PCR Amplification Products. (A) Multiplex PCR amplification products for the rpoB assay and (B) Semi-nested PCR amplification products for the

katG assay, on agarose gel electrophoresis.

doi:10.1371/journal.pone.0137791.g001

control (-C), which consisted of PCR reagents without the addition of templates (NO TEM-
PLATE), were included to test for possible background appearance or false positives.

For the rpoB assay, the FITC-labeled rpoB forward primers, together with the biotin-labeled
RpoB-IR’ (Table 2), generate PCR products of 189 bp (codon 531), 203 bp (codon 526) and
235 bp (codon 516) in size (Fig 1). The DIG-labeled RpoB-IF’ (Table 2) and the biotin-labeled
RpoB-IR’, generate PCR product of 314 bp in size (Fig 1). For the katG assay, the FITC-labeled
315T-F and the biotin-labeled KatG-IR’ (Table 2), generate PCR product of 335 bp (codon
315) in size (Fig 1). The DIG-labeled KatG-IF’ (Table 2), together with the biotin-labeled Kat-
G-IR’, generate PCR product of 630 bp in size (Fig 1). With the use of the labeled primers, the
PCR amplification products are rendered as dual labeled amplicons (either biotin-FITC, or bio-
tin-DIG, on either end of the amplicon). After PCR amplification, 10 pul of PCR product were
used for NALF detection. For analytical comparison of the results, 5 pl of PCR product were
also used to run gel electrophoresis, and were visualized using 3% agarose gel (SeaKem, Lonza
Inc., USA) infused with Gel-Red dye (Biotium, USA).

Nucleic Acid Lateral Flow (NALF) Development

The NALF device has been designed for the indirect detection of amplified PCR products
through the use of antibodies against primer-tags; FITC, DIG, and biotin (Fig 2). Monoclonal
antibodies (mAbs) against each tag molecule were produced in-house using the mouse hybrid-
oma technology, with specific recognition to FITC, DIG, and biotin (data not shown).

The NALF device consists of sample application pad, conjugate pad, nitrocellulose mem-
brane and adsorption pad, which are assembled together in a plastic housing. NALF detection
was performed individually for the rpoB and katG assays, using separate NALF devices for
each assay. Following PCR, 10 pl of PCR product, either from the rpoB or the katG amplifica-
tion assay, were mixed with 90 pl of NALF buffer solution and added to the NALF device at the
sample pad. The mixture was then dispensed onto the conjugate pad, which hosts gold-nano-
particles (AuNPs) conjugated with anti-biotin mAbs (AuNP-anti-biotin) to detect dual labeled
amplicons by binding with biotin (Fig 2). The complex flows along the nitrocellulose mem-
brane towards the test-lines, T1 and T2.
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target genes visual signal from local
surface plasmon
resonance of AUNPs
dual labeled
amplicon —> % § % ii
direction Y Y Y

= AT

conjugate pad C absorbent pad

test-llnes control line

O gold nanoparticle (AuNP) Yanti-biotin detection antibody

@ biotin Y anti-FITC capture antibody
@ FITC \/ anti-DIG capture antibody
@ DIG Y anti-mouse IgG antibody

Fig 2. Schematic illustration of NALF design. The NALF device functions to indicate the presence of dual
labeled amplicons in PCR products. At the conjugate pad, AuNP-anti-biotin binds to biotin on one end of the
amplicon, and the complex flows towards the test-lines, T1 and T2. T1 is lined with anti-FITC mAb to capture
biotin-FITC labeled amplicons, indicative of RIF resistance for the rooB assay or INH resistance for the katG
assay. T2 is lined with anti-DIG mAb to capture biotin-DIG labeled amplicons for Mtb DNA control. The
excess AuNP-anti-biotin is captured at the control line (C) by anti-mouse IgG.

doi:10.1371/journal.pone.0137791.g002

The first test-line (T1) is composed of anti-FITC mAb for capturing biotin-FITC-labeled
amplicons to indicate RIF resistance in the rpoB assay or INH resistance in the katG assay (Fig
3); for rpoB, the appearance of T1 corresponds to PCR product sizes 189 bp, 203 bp or 235 bp
on agarose gel, and for katG, to 335 bp on agarose gel (Fig 1). The second test-line (T2) hosts
anti-DIG mAD to capture biotin-DIG-labeled amplicons for Mtb DNA control, which must
appear in all cases for the results to be valid (Fig 3); for rpoB, the appearance of T2 correlates
with 314 bp on agarose gel, and for katG, to 630 bp on agarose gel (Fig 1). The excess AuNPs-
anti-biotin, unbound by amplicons, flow pass the two test-lines and are captured at the control
line (C) by anti-mouse IgG to ensure the correct operation of the device. The absorbent pad
functions as a wick to maintain the flow rate and direction, while preventing any back flow of
fluid [16]. NALF results were read after 10 minutes of PCR product addition.

Least Limit of Detection (LOD) Determination

The least limit of detection (LOD) is defined by the minimum number of copies of target genes
required in each PCR reaction for a successful detection of the PCR products. The least limit of
detection was determined using purified genomic DNA extracts from the H37Rv Mtb isolate,
as well as Mtb isolates with known mutations (Table 1) as PCR amplification templates. To
determine the LOD of the rpoB and katG assays, serial dilution of the templates was performed
as follows; 10 ng (10° copies of DNA), 1 ng (10° copies of DNA), 0.1 ng (10* copies of DNA),
0.01 ng (10 copies of DNA), 0.001 ng (10> copies of DNA). All NALF results were compared
with the results of agarose gel electrophoresis for confirmation.

Results
The Selection of Genes and Mutation Sites for MDR-TB Determination

In order to determine MDR-TB, this study focuses on the positive detection of RIF and INH
resistance. Based on a broad compilation of MDR-TB global epidemiological statistics (Fig 4),
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TM1T2 C

RIF/INH resistance

Mtb DNA control

No template

T2 absent (INVALID)

C absent (INVALID)

Fig 3. Example of possible NALF outcomes.

doi:10.1371/journal.pone.0137791.g003

85-95% of RIF resistance has been found to naturally accompany INH resistance [17-23],
making RIF resistance a widely used surrogate marker for MDR-TB; however, there is a 5-15%
chance of RIF monoresistance development. 90-95% of RIF resistance confers mutation(s) in
the 81-bp hot-spot region (codons 507-533) of the rpoB gene, called the rifampicin resistance-
determining region (RRDR), with the highest global prevalence being at codons 531, 526 and
516. Multiple mutation types have been recorded per codon, with different statistical occur-
rence [24-28]. On the other hand, 60-80% of INH resistance is due to a single mutation
(S315T) in the katG gene at codon 315 [29-34], with the rest occurring in other genes, such as

RIF-resistance MDR-TB INH-resistance
10%
th
goen:; o rpoB codon 516 20-40%
inhA and
10% other rpoB mutations ahpc
50-60% |
rpoB 20-30%
codon poB 60-80%
531 codon katG S315T
526
Y

Fig 4. Distribution of MDR-TB determining mutations. A broad compilation of MDR-TB global
epidemiological statistics represents the estimated percentage distribution of MDR-TB determining
mutations. The compilation demonstrates that 85—-95% of RIF resistance is accompanied by INH resistance
to determine MDR-TB (purple). Five to fifteen percent of RIF resistance (brown crest) and 5-25% of INH
resistance (blue crest) are monoresistance occurrences. [9-11,15,17,21-37,39-52].

doi:10.1371/journal.pone.0137791.g004
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& &
S S
& o &
M 6;5' ‘b’b eo Template
bp
Template T1T2 C
= 630
katG MT - 315T {
katGWT
NO TEMPLATE 335

Fig 5. NALF and agarose gel electrophoresis results for the katG assay. NALF; the appearance of T1
and T2 for katG MT template indicates a positive detection of INH resistant Mtb isolate, whereas the
appearance of T2 (only) for WT template indicates a positive detection of an INH susceptible Mtb isolate.
Correspondingly, for gel electrophoresis, two bands are generated for MT template (630 bp, equivalent to
NALF T2, and 335 bp to NALF T1), and a single band for WT template (630 bp, equivalent to NALF T2).

doi:10.1371/journal.pone.0137791.g005

in the promoter region of inhA and in ahpC genes [35-37]. INH resistance, however, is not
commonly used as an independent marker for MDR-TB [38-42]. From the compiled data, the
target mutation sites selected for MDR-TB determination in this study are rpoB codons 531,
526 and 516 for the rpoB assay in the determination of RIF resistance, with one mutation type
of interest for codon 531 (L), four for codon 526 (Y, R, D and L), and one for codon 516 (V)
(Table 1), with the highest statistical prevalence worldwide [17,18,23-28,43-47]. As for the
katG assay, katG codon 315, with the S315T mutation, has been selected as the single mutation
site in the determination of INH resistance [17-21,29-36,48-52].

KatG PCR Amplification and Detection by NALF

The determination of INH resistance in this study targets a single mutation (S315T) in the
katG gene. Because the target mutation is singular, the use of just one mutation determining
primer, 315T-F (Table 2), in the katG assay should be adequate. The functionality of katG
primers and the ability to identify WT and MT templates were evaluated with the H37Rv Mtb
isolate, along with four Mtb isolates containing the S315T mutation, via semi-nested PCR. The
amplicons were detected using the NALF device and confirmed with agarose gel electrophore-
sis. The NALF results and the corresponding agarose gel electrophoresis results for all four
Mtb isolates indicate the correct identification of MT and WT templates. Fig 5 is a representa-
tion of the results.

Primer Design for the rooB Assay

RpoB, unlike katG, carries multiple mutation sites. To simultaneously detect all the target sites
in one PCR reaction, the incorporation of several site- and mutation-specific primers into a
single assay is required. The standard primer design of a single base mismatch between primer
and non-target template, especially for codon 526 with four different target mutation types
(Table 1), may not be enough to ensure correct template distinction. Therefore, the Yaku-
Bonczyk primer design method, entailing an intentionally incorporated additional mismatch,
has been explored in the study [15,53]. The added mismatch is expected to enhance specificity,
leading to a better discrimination against non-complementary DNA. For the eventual selection
of rpoB primers, for mutation detection within the rpoB assay, two primer sets were designed
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and assessed against each other; SM (single mutation) primers with the standard design of a
single base mismatch at the 3’-terminus to complement MT templates, and DM (double muta-
tion) primers with an additional strategically located mismatch at the third position from the
3’-terminus in accordance with the Yaku-Bonczyk method (Fig 6, Table 2).

Mutant Primer Selection for the rpoB Assay

The SM and DM primers were tested with MT and WT templates in semi-nested PCR. Each
primer was tested in a separate assay composed of RpoB-IF’, RpoB-IR’, and the target primer
of interest for mutation detection (Table 2). The test results (Fig 7) show that SM primers were
able to anneal to their specific targets, and were able to correctly identify the MT and WT tem-
plates with high efficacy. The appearance of an unaccountable non-specific band of approxi-
mately 270 bp on agarose gel in Fig 7 did not lead to a false positive/negative or background on
NALF, and therefore, did not interfere with the test. DM primers, on the other hand, did not
perform as expected. They failed to anneal to their targets, providing negative results (data not
shown). DM primers were, therefore, exempted from further experimentation.

Multiplex PCR for the Simultaneous Detection of RIF Resistance
Determining Codons in the rpoB Gene

SM primers, which have been selected for the rpoB assay, were combined into a single assay for
multiplex PCR, which would allow all RIF resistance determining mutations at target codons
531, 526 and 516 to be detected simultaneously. Initially, the combined assay was tested using
pDNA for condition optimization (data not shown). The optimized conditions were then vali-
dated and tested for reproducibility using the H37Rv (WT) Mtb isolate and Mtb isolates with
known mutations (4 isolates for codon 516, 6 for codon 526, and 4 for codon 531) (Table 1).
Fig 8 is a representation of the results, which reaffirms the efficacy, stringency and the specific-
ity of the SM primers in the rpoB assay.

Primer and template —=>» Sequence

A rpoB codon 526(Y)

SM-526Y-F’ primer —>» §&-FITC-GTC GGG GTT GAC|C|T|-3
DM-526Y-F’ primer =p 5-FITC-GTC GGG GTT GAC|A|T [A-3’
DNA template (MT) —=> 3-CAG CCC CAA CTG|G|A|T-5’
DNA template (WT) —> 3-CAG CCC CAA CTG|G|G|T-&
B rpoB codon 526(R)

SM-526R-F’ primer -=>» 6&-FITC-GTC GGG GTT GAC|C|C|G|-3
DM-526R-F’ primer =» 5-FITC-GTC GGG GTTGAC|A|C|G|-3
DNA template (MT) —> 3-CAG CCC CAA CTG|G|G|C -5’
DNA template (WT) > 3-CAG CCC CAA CTG|G|G|T -5

Fig 6. RpoB primer design strategy. RpoB primer designs for codon 526 (mutations Y and R) have been
demonstrated above as examples. SM (single mutation) primers are designed with a single base mismatch at
the 3’-terminus to complement MT templates. DM (double mutation) primers, which have also been designed
to complement MT templates, carry an added mismatch at the third position from the 3’-terminus. The red
colored bases indicate an intentional mismatch and the blue colored bases indicate a complementary base to
the SM and DM primers.

doi:10.1371/journal.pone.0137791.9g006
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Fig 7. NALF and agarose gel electrophoresis results for the rpoB assay. (A) The use of SM primers demonstrate an effective template distinction with
the appearance of NALF T1 and T2 for all MT templates to indicate RIF resistant Mtb isolates, which relates to the inner and outer DNA bands on agarose gel
for the MT templates. As for WT templates, the assays correctly resulted in the appearance of NALF T2 only, to indicate RIF susceptible Mtb isolates, which
corresponds to PCR product size 314 bp on agarose gel.

doi:10.1371/journal.pone.0137791.9007

Least Limit of Detection (LOD) Determination

The least limit of detection (LOD), which has been described in the study as the minimum
number of copies of target genes required in each PCR reaction for a successful detection of the
PCR products, was determined for both the rpoB (using SM primers) and the katG assays. The
results indicate the LOD to be 10* copies of DNA (0.1 ng) per PCR reaction via NALF detec-
tion, and 10° copies of DNA (1 ng) per PCR reaction via detection by gel electrophoresis (Fig
9). The NALF test-lines illustrate a clear loss of intensity as the concentration of template DNA
in the reactions diminished. Below the concentration of 10* copies of DNA, the NALF test-
lines were no longer visible. A lower LOD determined for NALF, compared to agarose gel elec-
trophoresis, suggests a higher sensitivity of the device.

Discussion

NALF technology is an interesting tool for enabling simplification of molecular diagnosis.
Recent studies have successfully field-tested NALF for point-of-care molecular detection of
malaria with promising results [54-56]. Preliminary tests have also been conducted for a lateral
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Template T1IT2 C
— 516V

Multiplex PCR - combining all rpoB MT (SM) primers
526Y | ]

rpoB 526R

MT | 526D

526L

—531L
rpoB WT - H37Rv

NO TEMPLATE

Fig 8. RpoB assay in multiplex PCR. NALF results for multiplex PCR presented with the correct appearance of T1 and T2 for MT templates to register RIF
resistance Mtb isolates, and the appearance of just T2 for WT template to register RIF susceptible Mtb isolates.

doi:10.1371/journal.pone.0137791.9008

flow based quantitative detection of amplified HIV-RNA with clinical relevancy [57]. This
proof of concept study, using the above principle, attempted to develop a molecular diagnostic
alternative for MDR-TB to complement the use of conventional PCR, targeting low-resource
and peripheral healthcare settings that already routinely employ PCR machines. The develop-
ment of NALF, to meet the objective, was fixated upon simplicity and rapidity. These qualities
were achieved through the strategic design to minimize operator involvement, and to present
the results in the most non-complex manner. The approach uses gold nanoparticle (AuNP)
conjugated with anti-biotin antibodies to detect dual labeled amplicons, and anti-FITC/DIG
antibodies to capture and immobilize the amplicons on the test-lines for visual indication (Fig
2). This technique eliminates the requirement for operator intervention. Moreover, the sim-
plicity is also projected through the concise display of NALF results, using only two test lines;
T1 for RIF resistance indication in the rpoB assay or INH resistance indication in the katG
assay, and T2 for Mtb DNA control (Fig 2).

This NALF design contrasts other commercially existing DNA strip tests for MDR-TB such
as GenotypeMTBDRplus which has 27 reaction zones on a single test strip, with 21 DNA
probes for mutation detection and 6 probes as control [8]. All 27 lines representing rpoB, katG
and inhA are displayed on the same test strip and have to be individually interpreted by the
operator. The detailed and complex nature of the results renders it more suitable for epidemio-
logical rather than diagnostic work. In comparison, the NALF device has no technical specifica-
tion or interference requirements, making it more appropriate for diagnostics.

Another important advantage of using anti-tag antibodies on NALF rather than DNA
probes is that it permits the indirect capture of target amplicons without necessitating DNA
hybridization. This advantage makes the device generic, allowing broader application. The
device can, thus, be adapted for the diagnosis of any disease requiring nucleic acid detection,
based on the strict use of primers conjugated with specific tags; biotin for detection and FITC/
DIG for capture (Fig 2). This generic nature allows the device to be mass produced at low cost,
serving the objective of targeting low-resource settings. This design differs from the lateral flow
designs adopted in previous studies in the determination of HIV and malaria infection where
sequence specific oligonucleotide probes were used to capture HIV-RNA and P. falciparum-
DNA [54-57].
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Fig 9. The least limit of detection (LOD); For both the rpoB and the katG assays, the NALF results present the LOD as 104 DNA copies (0.1 ng) per PCR
reaction, whereas the gel electrophoresis results present the LOD as105 DNA copies (1 ng) per PCR reaction. Below these DNA concentrations, the NALF
test lines or the agarose gel DNA bands are not observable. The LOD results for rooB codon 531 have been shown above to represent the results for other
rpoB codons.

doi:10.1371/journal.pone.0137791.9g009

As for primer design, we initially reasoned that the standard design of incorporating a single
3’-terminal mismatch to avoid primer hybridization with non-complementary DNA may be
inadequate for the determination of single-nucleotide polymorphisms (SNPs). For this study,
incorrect hybridization could lead to the misidentification of Mtb drug resistance, and there-
fore, MDR-TB. To minimize the possibility, the study explored the Yaku-Bonczyk primer
design strategy entailing an additional intended mismatch to enhance specificity [15,53]. The
study compared the functionality of the SM (single mutation) and DM (double mutation)
primers (Table 2, Fig 7) to evaluate their performance in the selection for the rpoB assay. The
criterion was based on specificity, efficacy, stringency and also their technical influence on the
design of the NALF device. DM primers, with an additional strategic mismatch (Fig 6), were
predicted to perform with a higher discrimination effect based on their success in other studies
[15,53,58]. The results, however, defeated the expectations wherein the DM primers failed to
anneal to their targets, providing false negative results. In this study, the DM primers were 15-
17 bases in length. Comparatively, the primers employed in a previous study, used as guidance
in the design of DM primers, is about 38 bases in length [15]. This distinction could have been
the root cause of the second mismatch considerably weakening the annealing bond between
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the DM primers and their complementary MT template, resulting in complete non-binding
[59]. SM primers, on the other hand, with the standard design of a 3’-terminal base comple-
menting the MT templates (Fig 6), selectively annealed to their targets, resulting in a successful
identification of the drug resistant (MT) and the drug susceptible (WT) Mtb isolates (Fig 7).
The rpoB SM primers were, therefore, selected for use in multiplex PCR.

From the broad compilation of the global MDR-TB epidemiological statistics (Fig 4), 85—
95% of RIF resistance was found to be accompanied by INH resistance; therefore, RIF resis-
tance is popularly used by several existing commercial tests, such as Xpert MTB/RIF and
INNO-LiPA, as the surrogate marker for MDR-TB [43,46,60]. However, many studies point
towards the benefit of testing for both RIF and INH resistance to improve the comprehensive-
ness of the results [38,61-63]. Retrospective studies have claimed that RIF monoresistance is
on the rise in South-Africa, and testing for RIF resistance alone has led to the misidentification
of MDR-TB [61,64]. Additionally, the incorporation of an INH assay would also support the
determination of INH monoresistance. A recent study in China showed that early diagnosis
of INH monoresistance allowed for the tailoring and implementation of specific therapies to
prevent the development of MDR-TB [52]. The results of the study showed positive treatment
outcomes for both patients diagnosed early with INH monoresistance as well as the drug-sus-
ceptible TB patients. A similar study conducted in the United States in 2009 also presented
with comparable results [49]. INH resistance, however, is characterized by mutations in several
genes (Fig 4) and aiming to detect all these genes would undesirably increase the complexity of
the PCR-NALF test, based on the current design. This study, therefore, selected to focus only
on the S315T mutation detection of the katG gene, an INH resistance conferring mutation
with the highest global prevalence [29-34].

The current PCR-NALEF test also presents an additional benefit of choice by dividing rpoB
and katG into two separate assays. The option offers convenience. This design contrasts the
test feature of GenotypeM TBDRplus where multiple probes for rpoB, katG and inhA are all
pre-lined on one single test strip [8]. RpoB and katG assays in this study also share the same
PCR thermocyling conditions, permitting the PCR amplification of both assays at the same
time, if the user chooses to. The same test design could also be adapted for the determination
of resistance to second-line drugs for the indication of extensively drug-resistant tuberculosis
(XDR-TB), such as for the detection of fluoroquinolone(s) resistance, which is caused by single
base mutations in the gyrA and gyrB genes [65,66]. The addition would add to the choice, as
well as the coverage of the test.

Another important factor defining the validity of a molecular test is the least limit of detec-
tion (LOD), which signifies the sensitivity of the test. The LOD of the current test, for both the
rpoB and katG assays, was found to be 10* genomic copies per PCR reaction (0.1 ng of DNA)
(Fig 9) using NALF. Even though the least LOD is relatively high, suggesting the need for fur-
ther optimization, the current result of 10* genomic copies could potentially be considered
within the clinically relevant range. Sputum samples from TB patients with positive AFB stain-
ing of 1+ and 2+, based on the standard manual for laboratory technicians, is estimated to con-
tain approximately 1-3x10* and 3-5x10* Mtb bacilli per ml of sputum, respectively [67].
Moreover, further studies using sputum samples are underway to help define the sensitivity
and specificity of the test.

In spite of the promising results of the study, several aspects could still be improved. The
LOD, which reflects the analytical sensitivity of the PCR-NALF test, could further be reduced
through additional optimization, to enable a feasible detection of lower DNA concentrations.
The extent of rpoB mutation coverage in the study could also be widened by incorporating the
detection of more codons such as codons 533, 522, 513 and 511 within the rifampicin-resis-
tance determining region [27,28,44,47]. In addition, further incorporation of inhA and ahpC
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genes, which account for 20-40% of INH resistance (Fig 4), could also improve the overall
comprehensiveness of the test results.

In conclusion, this proof of concept study demonstrates the potential use of PCR-NALF as a
molecular diagnostic alternative for the detection of MDR-TB. The simplicity, rapidity and
ease-of-use could prove beneficial for low-resource settings that already employ PCR
machines. Furthermore, the generic nature of the NALF device provides great diagnostic
potential in adapting the test for the detection of other infectious and non-infectious diseases
that require nucleic acid identification.
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