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A B S T R A C T   

In the current experimental investigation, the radiators’ heat transfer performances are evaluated 
experimentally and validation is done using the analytical ε-NTU method. In this experimental 
study composition of the cooling fluid is 50:50 water/EG. The pressure and temperature values 
are fixed for air and water/ethylene glycol sides. The velocity of air is between 1.5 − 12 m/s and 
water/ethylene glycol flow rate is between 2.5 − 7 kg/s. All measurements are performed after 
steady state is reached. For altering operation conditions, the overall heat transfer coefficient, exit 
water/ethylene glycol temperature, pressure drop and friction coefficients are evaluated experi
mentally. Both rate of heat transfer and the pressure drop are maximum for the double U grooved 
case. For the tested radiator categories, the overall heat transfer coefficient rose with increasing 
coolant and air velocity and the exit temperature raised with increased coolant flow rate and 
decreased with increasing velocity of air.   

1. Introduction 

Thermal performance and the radiator design are two major components that shape the overall efficiency of the heavy trucks. For 
unvarying inlet temperature and pressure, the performance of four dissimilar heavy truck radiators is considered with altering water/ 
ethylene glycol flow rate and air velocity. The essential variables for the optimal thermal performance are disclosed using the design 
parameters and the operating conditions. In the literature review, all range of vehicle radiators are included because there are few 
studies focusing on heavy trucks and they are summarized in the following paragraph. 

Charyulu et al. [1] investigated the impact of dissimilar materials in the fin and tube production of diesel engine radiators and 
reported similar HT and PD characteristics for brass, copper and carbon steel. Rahmatinejad et al. [2] investigated the optimum engine 
radiator size for identical operating conditions. The experimental results are validated with a genetic algorithm. The optimum number 
of fins is reported as 436 with a size of 2.867 mm, where the size, cost and weight of the heat exchanger reduced significantly. Akpobi 
et al. [3] performed and FEM analysis to evaluate the velocity and temperature variation in the radiator tubes. They reported the 
necessity of dense meshing in the vicinity of the inlets and exits to have more accurate solutions. In the experimental investigation 
Hamid et al. [4] studied the HT performance of hybrid nanofluid in a circular tube with wire coil inserts. The results are presented for 
0.5–3.0% volumetric concentration of TiO2–SiO2 hybrid nanofluids, Re number 2300–12000 and pitch ratio of 0.83–4.17. The 
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optimum performance is reported for 1.5 pitch ratio and 2.5% concentration. Bilen et al. [5] investigated the grooved tube friction and 
HT characteristics for turbulent flow regime. Three different groove geometries are compare and trapezoidal grooves performed su
perior up to Re = 30000 and rectangular grooves performed better up to Re = 28000 compared to circular tubes. The optimum entropy 
generation is reported at Re = 17000 for all groove geometries. Murugesan et al. [6] investigated the HT and PD in square cut twisted 
and plane twisted tube inserts under turbulent flow regime for altering twist ratios and 2000<Re<12000. The square cut tape inserts 
showed significantly higher performance in HT however the PD also increased significantly compared to plain cut tape inserts. They 
also introduced Nusselt number and friction coefficient equations for square and plane twisted tapes. Eiamsa-Ard et al. [7] studied the 
rib grooved tube flow and reported the turbulent heat transfer characteristics under uniform heat flux. The comparison was performed 
for altering configurations of the triangular rib, triangular groove and rectangular rib. Rectangular rib and triangular groove per
formed significantly better compared to other combinations hydro-thermally. The effect of pitch ratio also studied to introduce 
equations for Nusselt number, friction coefficient and enhancement index. The heat transfer and friction characteristic of R-134a in a 
corrugated pipe heat exchanger is investigated experimentally (Loahalertdecha et al. [8]). They conducted the experiments for con
stant hot water Re number, Re = 5500, and a range of cold stream Re number 3500<Re<18000. For altering convex and concave 
corrugated tube configurations the maximum performance is reported for concave corrugated outer and convex corrugated inner pipe 
version. Ji et al. [9] performed a comparison study with corrugated tube and plane tube heat exchangers fro altering pitch heights and 
mass fluxes for R-134-a. They reported a better hydro-thermal performance of corrugated pipe compared to plain version. In a 
literature summary Mohammed et al. [10] performed a comparison study for different pipe geometries for hydro-thermal performance 
and concluded that the internally finned tubes performed significantly better than other tube configurations and for dimpled and 
corrugated pipes the PD rise is insignificant compared to their superior thermal enhancement. Finally, especially at turbulent regime 
the twisted tape inserts reported to perform with a low efficiency however they might be preferable for high viscous flows and low to 
moderate Re number regimes. The symmetry and zigzag shaped trapezoidal corrugated tubes are investigated by Ajeel et al. [11] 
numerically. Four nanofluids (Al2O3, CuO, SiO2, and ZnO) are compared for a range of concentration, 1–4%, and 500<Re<20000 and 
aspect ratio of groove with 0.5–4. Trapezoidal grooves performed better thermally and SiO2 resulted with highest Nusselt number. The 
best performing base fluid is reported as glycerin. In an experimental study Kcheril and Elias [12] investigated the radiator perfor
mance for automobile engines and compared aluminum based nanofluids and nanosized ferro fluids. They observed a better heat 
transfer performance with ferrofluids compared to aluminum nanofluids. To reduce the radiator size and weight and improve the 
efficiency Salamon et al. [13] investigated the TiO2 nano fluid experimentally. They reported a better performance of traditional 
EG/water mixture at low inlet coolant temperature however at higher operating temperatures the TiO2 nano fluid improved the HT 
rate with 8.5% compared to EG/water mixture. Goudarzi and [14] conducted an experimental study to study the influence of Al2O3-EG 
nanofluid and wire coil inserts in vehicle heat exchangers. The experiments are conducted for two dissimilar wire cross sections and 
three increasing concentration of nanofluids. The synchronized use of wire inserts and nanofluids performed 5% better than the case 
with only wire inserts used. The high performance vehicle engines require higher energy removal. In the experimental study Said et al. 
[15] investigated the radiators with Al2O3 /EG:DW and TiO2 /EG:DW. They performed a comparison based on the thermophysical 
characteristics and stability at long term of the two nanofluids. They observed 24.21% thermal performance improvement with the 
Al2O3 /EG:DW. Shahsavani et al. [16] proposed a compact correlation function of temperature and particle concentration using 
available practical data and investigated F-MWCNTs/EG-water nanofluids. They used the correlations to evaluate the PD and HTC. It is 
reported that a decrease in PD with rising shear rate and an increase with rising concentration and temperature. They concluded that 
for higher shear rate operating conditions F-MWCNTs/EG-water nanofluids is a proper choice. Contreras et al. [17] investigated the 
thermal and flow performance of EG/water based silver and graphene nanofluids in vehicle radiators. They reported augmentation of 
pumping power by 4.1% at high temperatures and mass flow rates. They concluded silver nanofluid improved the HT by 4.4% however 
the thermo-hydraulic performance worsened with graphene nanofluid. Abbas et al. [18] investigated the Fe2O3–TiO2/water hybrid 
nanofluids application in aluminum tube vehicle heat exchangers. They performed an experimental study for a range of operating 
conditions 0.005, 0.007 and 0.009 vol%, inlet temperature from 48 to 56◦C and flow rate from 11 to 15 LPM. The inlet temperature 
reduced the HT by %8 and at higher concentrations due to unstable mixture the performance reduced significantly. Contreras et al. 
[19] investigated the radiators which are operating at high temperature using the MWCNT nanofluid experimentally for altering 
concentration, inlet temperature and they assessed the HT rate and overall HTC practically. The heat transfer performance improved 
with higher volume fraction and worsened with raising temperature at the inlet. 

The vehicle heat exchangers usually designed using the welded and flattened tubular systems. Under identical operating conditions 
the novel double-U grooved and brazed tubes are compared with heavy duty vehicle heat exchangers designed with usual tubular 
systems. In current practical work, the effect of the flow rate of the coolant and the air velocity on thermal performance of four 
dissimilar truck radiators is researched. The HEs are evaluated in terms of HT rates, exit temperatures, total HTC and PDs. The practical 
outputs are associated with ε-NTU analysis and they show an agreement with an error less than 10% for all studied cases. 

2. Experimental method 

2.1. Experimental setup 

Four different heavy truck radiators are studied practically for different working conditions and the consequence of altering pa
rameters are discussed for HT rate, f and PD. The working fluid is a blend of 50:50 vol. DI water- EG. The radiators geometry details are 
given in Table 1. The experimental set up is shown in Fig. 1. Flattened and welded aluminum tube is used in R1 and R2. Double u- 
grooved and brazed aluminum tube is used in R3 and R4. Fin is used in all radiators with a constant geometrical parameters as Hf = 0.1 
mm and Wf = 7.8 mm. The flattened pipes hydraulic diameter Dh = 3.931 mm, and the double-U grooved hydraulic diameter Dh =
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2.531 mm. Aspect ratio of flattened pipe is 19.51 and 29.15 for U-grooved tubes. 
The working conditions are summarized in Table 2. The measurements are performed after the steady state is reached. In Fig. 2, the 

whole specially equipped test chamber is shown. Water/EG and air side temperatures and pressures are collected with 50 Hz 
frequency. 

2.2. Experimental validation 

The hydro thermal characteristics and overall HT coefficient are assessed for altering working parameters for four vehicle radiators. 
The working conditions are given in Table 2. 

The evaluated HT rates are compared with the measured data assessed with ε-NTU technique and an excellent compatibility is 
attained. The bulk temperatures are used to calculate the thermal specifications of the water/EG blend and the air. The bulk tem
peratures for water/EG and air (Tb,f , Tb,a) are evaluated using the in and out temperatures using the following equations: 

Tb,f =

(
Tf,i + Tf,o

)

2
(1)  

Tb,a =

(
Ta,i + Ta,o

)

2
(2) 

The fluid and air side heat transfer rates: 

Q̇f = ṁf ⋅ Cf ⋅
(
Tf,i − Tf,o

)
for water/EG, (3)  

Q̇a = ṁa ⋅
(
ha,o − ha,i

)
for air (4)  

here ṁ is the mass flow rate, C is the specific heat, T is the temperature, h is enthalpy, the subscript f is for water/EG, a is for air, i is for 
inlet and o is for outlet. 

The friction factor in the water/EG side reads 

f =
(
2 ⋅ ΔPf ⋅ Dh

)

(
Lrad ⋅ N ⋅ ρf ⋅ u2

) (5) 

The Re in the water/EG and air sides: 

Ref =

(
ρf ⋅ uf ⋅ Dh

)

μf
(6)  

Rea =
(ρa ⋅ ua ⋅ Wa)

μa
(7)  

here Wa is the fin-width at the air side. The overall HTC found using the data is 

Uexp =

(
Q̇exp

)

LMTD ⋅ F ⋅ π ⋅ Dh ⋅ Hrad ⋅ N
(8)  

LMTD =

(
Tf,i − Ta,o

)
−
(
Tf,o − Ta,i

)

ln
(
(Tf,i − Ta,o)
(Tf,o − Ta,i)

) (9)  

here Q̇exp is the HT rate in the water/EG side and F is the correction factor of cross flow. The total heat capacities are reads; 

Cf = ṁf ⋅ Cp,f (10)  

Ca = ṁa ⋅ Cp,a (11)  

Table 1 
Radiators’ geometrical factors.  

Design parameters R1 R2 R3 R4 

Radiator size Hrad × Lrad × Wrad [mm3] 660× 868× 40 760× 868× 40 660× 868× 40 760× 868× 40 
Pipe size Hp × Wp [mm2] 40× 2.05 40× 2.05 39.35× 1.35 39.35× 1.35 
Number of louvered fins Nf 81 81 87 87 
Number of pipes 80 80 86 86 

R=Radiator. 
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Cr =
Cmin

Cmax
(12)  

here Cr is the ratio of specific heat of the water/EG and air side. 

Qmax =Cmin ⋅
(
Tf,i − Ta,i

)
(13)  

Qestimate =Cf ⋅
(
Tf,i − Tf,o

)
(14)  

here the effectiveness ε is defined as 

ε =
Qestimate

Qmax
(15) 

The NTU value then defined: 

Fig. 1. Test section [20].  

Table 2 
Working conditions of the practical study.  

Parameter Range 

Water/EG inlet temperature (Tc,i) 107 ◦C 
Inlet air temperature (Ta,i) 40 ◦C 
Inlet water/EG pressure (Pc,i) 100 kPa 
Inlet air pressure (Pa,i) 150 kPa  

Fig. 2. Photograph of the test chamber [20].  
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NTU =
1

(Cr − 1)
⋅ ln

(
ε − 1

Cr ⋅ ε − 1

)

(16)  

UNTU =
(Cmin ⋅ NTU)

π ⋅ Dh ⋅ Hrad ⋅ N
(17)  

here NTU is the number of transfer units and UNTU is the overall HTC. 
The practical overall HTC is found using 

Uexp =

(
Q̇exp

)

LMTD ⋅ F ⋅ A
. (19)  

A = π ⋅ Dh ⋅ Lrad ⋅ N. (20)  

3. Results and discussion 

A cooling system of a vehicle is a set of components and working fluids to retain the engine’s temperature at best possible values. 
This system composed of pump, coolant and thermostat and used in order to prevent the engine from break down due to overheating 
and complete the thermodynamic cycle. The cooling circuit is designed to maintain the engine temperature constant within certain 
limits. The radiator is a HE where the coolant is circulated and cooled down within the pipes and sent back to engine to absorb waste 
heat. During this process, the thermal capacity of the coolant, the design of the radiator, the exit temperature of the coolant, f and the 
PD plays essential role. In this study newly designed double-U grooved and brazed pipes are proposed for heavy duty vehicle radiators. 
The comparison with flattened and welded pipe is performed in terms of overall HT coefficient, HT rate, exit temperature and PD under 
changing operating conditions. Due to page limitation, only some of the important results and data could be given in this work. 

The validation and accuracy of the experimental study is performed with a comparison between experimentally evaluated HT rates 
and analytical calculations. Additionally the experimental overall HT coefficient and the overall HT coefficient evaluated using the 
effectiveness-NTU method is compared for four dissimilar radiators designs. It is seen that in all design cases the mass flow rate increase 
enhanced the HT rate as well as the overall HT coefficient. The comparison is performed using ±10% error margin lines. In Fig. 3, the 
comparison for HT rate is shown for mass flow rate 3 kg/s for R1 and R4, for demonstration purposes. R1 both HT rates and overall HT 
coefficients are remained within the error margin. The error for R1 less than 5% and for the R4 the error is lower than 10%, see Fig. 3a 
and b shows the results for R1 and R4. The uncertainties inherited from the measurements causes the difference between the two 
results which should be the same under idealized case. Because of relatively low error margins, the experimental set up is acceptable 
and the insulation is satisfactory. Experimental overall HT coefficient is evaluated using equation (15); experimental overall HT co
efficient is evaluated using equation (10). It is observed that for all design cases the findings are within the ±10% deviation bands. In 
Fig. 3c and d, only two radiator results are shown for mass flow rate 3 m/s for demonstration purposes and they show the results for R1 
and R4 respectively. 

Fig. 3. Evaluation of practical and theoretical heat transfer rates and overall heat transfer coefficients determined by ε-NTU for rising air velocities at fixed coolant 
flow rate of 3 kg/s for Radiators 1 and 4. 
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For increasing water/EG Re the friction coefficient in the water/EG part and PD in the radiator is studied and the trend show 
similarities for altering air velocity. A characteristic tendency for f and PD is given in Fig. 4a and b, for ua = 12 m/s. The friction 
coefficient reduces to some extent with increasing Re. The maximum f is found at the lowest water/EG Re for the R1. R3 demonstrated 
somewhat lesser friction coefficient compared to R4, which is because of the longer height of R4. The f reduced as the Re rose. The f is 
directly proportional to the water/EG viscosity at low Re. However, this observation is not valid at higher Re. For the higher Re, the f 
does not have a major dependence on water/EG viscosity, vortical structure of the operating fluid, and velocity has more important 
responsibility in raising the f. The consequence of viscosity is then less distinct [21]. Increased inertial forces reduce the friction force. 
The aerodynamic profile of the tubes used in the construction may lead lessened drag [22]. The complex flow characteristics and 
deceleration of the flow between the fins affects significantly the PD [23]. Augmented air flow rate does not alter the PD inside the 
radiator significantly. The highest PD is observed for R3 and R4 under same inertial effects. 

A general observation for all radiator types is that the HT increased with rising water/EG mass flow rate (2.5 kg/s < ṁ < 4.5 kg/s). 
The HT rate also increases with increasing air velocity (2 m/s < ua < 12 m/s). For all operating conditions, R4 shows the highest HT 
rates. The HT rate of R2 and R3 shows close values at low air velocities. At low air velocities, such as ua = 2 m/s, the HT rates are 
ordered as R1 < R2 < R3 < R4. At moderate air velocities the order for R3 and R4 remains unchanged; however the performance of 
R1 and R2 performs identical. The behavior of HT rates of the radiators at low air velocities are observed at highest air velocity, ua =

10 m/s, and ua = 12 m/s. For increasing air velocities the enhancement in HT rates shows a steeper gradient with rising mass flow 
rates. A similar behavior is observed for rising Re numbers. 

The impact of rising air velocity on HT rate is illustrated in Fig. 5. The sequence of radiator performance is depicted whereas the 
influence of rising air velocity is steeper at lower ones and becomes less steep at higher ones. Overall HTC is a function of the 
convective HTC, as a result, for higher Re causes larger HT rates. Tendency lines on Fig. 5 validate the essential physical mechanism of 
the convective HT. 

The sole effect of rising mass flow rate of water/EG and air velocity on the water/EG outlet temperature is studied as illustrated in 
Fig. 6. In all cases, the water/EG inlet temperature is fixed to Tf,in = 107 ◦C. It should be noted that for all radiator categories at constant 
air velocity the rising water/EG mass flow rate augments the water/EG temperature at the exit. However the water/EG exit tem
perature decreases with increasing EG/water mass flow rate at constant air velocity. This is due to the EG/water residence time reduces 
with growing mass flow rate. For all air velocities and mass flow rates, the largest temperature drop is obtained in R4. 

4. Conclusion 

In this experimental study, four different heavy duty vehicle radiators are compared under different working conditions. The ra
diators are compared with each other regarding with hydrothermal performance under dissimilar working conditions. The R1 and R2 
have conventional configuration, equipped with flattened and welded pipes with 81 louvered fins and the height of R2 is longer. The 
R3 and R4 equipped with newly designed tubular system with double-U grooved and brazed pipes with 87 louvered fins and the height 
of the R4 is longer. The common observations:  

a The hydro thermal characteristics increased with increases radiator length  
b For the tested four radiator categories, the HT rate is augmented with rising flow rate of water/EG and air velocity. R3 and R4 

performed better because they are installed with double U grooved and brazed tubes.  
c The friction factor faintly alters with water/EG flow rate and the air velocity. The maximum f is evaluated for R1. The friction 

factors are equal for R3 and R4.  
d The PD rises with increasing inertial forces.  
e The R4 exhibits the highest PD and R1 exhibits the lowest PD.  
f The practically measured overall HTC and ε-NTU technique is compared for all radiator types, the error margin is found to be lower 

than 10%. R4 exhibited the finest fit among the radiators.  
g The double-U grooved pipe Radiator is observed to perform better in terms of heat transfer rate but higher PD penalty. 

Fig. 4. Alteration of f (a) and PD (b) for rising Re of water/EG at ua=12 m/s.  
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Nomenclature  

A heat transfer area, m2 

C specific heat, kJ/kgK 
Dh hydraulic diameter, m 
EG ethylene glycol 
F correction factor for cross flow 
f friction factor 
H height, m 
HE heat exchanger 
HT heat transfer 
HTC heat transfer coefficient, W/m2K 
Lrad radiator length, m 
LMTD logarithmic average temperature difference, oC 
ṁ mass flow rate, kg/s 
N pipe number 
PD pressure drop, Pa 
R radiator 
Re Reynolds number 
T temperature, oC 
u velocity, m/s 
Q̇exp heat transfer rate obtained from the experiment, W 
W width, m 
1,2,3,4 radiator numbers  

Subscripts 
a air 
exp experimental 
f water/EG 
i inlet 
o exit 
r ratio 
rad radiator 
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