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Abstract: The bidirectional shortest path problem has important applica-

tions in VLSI floor planning and other areas. We introduce a new algorithm

to solve bidirectional shortest path problems using parallel architectures

provided by general purpose computing on graphics processing units. The

algorithm performs parallel searches from the source and sink using

Dijkstra’s classic approach modified with pruning and early termination.

We achieve substantial speedup over a parallel method that performs a single

parallel search on the GPGPU from the source to all other nodes but early

terminates when the shortest path to the specified target node is found.

Experimental results demonstrate a speedup of nearly 2� over the parallel

method that performs a parallel search from the source with early termination

on the GPGPU.
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1 Introduction

Shortest and longest path algorithms are crucial to applications spanning several

areas in computing, particularly in VLSI floorplanning, where the longest path is,

for instance, used to calculate the total area required for a circuit. Furthermore,

techniques for timing-aware global placement and detailed placement take the

longest path length as a parameter in order to identify a feasible clock period. VLSI

routing algorithms perform extensive searches for shortest route paths without

violating routing constraints. With millions of nets to be routed, or millions of gates

to be placed, shortest path algorithms must be run on a massive amount of data,

requiring substantial runtime resources in terms of time and memory. For example,

during placement optimization, the shortest/longest path algorithm may be exe-

cuted thousands or millions of times while the solution space is being explored

before a good solution is obtained. Hence, a substantial amount of the time required

in many VLSI optimizations is devoted to this shortest/longest path calculation.

The most common operation is to find the shortest path from a specific source node

to a specific target node.

To solve the single pair shortest path problem, two main algorithms are widely

accepted. The first is the A� search algorithm [1], and the second is Dijkstra’s

algorithm [2]. A� search is a heuristic method [3]. Bidirectional A� search

algorithms were proposed by Nannicini et al. [4] and Rice et al. [5]. Most of

bidirectional searches [6, 7, 8] use a heuristic to find the solution in a short amount

of time. Dijkstra’s algorithm is a path finding algorithm for computing a shortest

path from a source to all other nodes in a graph. Dijkstra’s algorithm can also

be used to find the shortest path between a source and a target by stopping the

algorithm when the target is reached. A parallel implementation of Dijkstra’s

algorithm for graphics processing units (GPUs) targeted for the single source,

multiple targets shortest path problem was proposed by Harish, Vineet, and

Narayanan [9, 10]. The idea is to take advantage of the hundreds or thousands

of graphics cores on the GPU to parallelize the solution space exploration and

consequently speed up the search for the optimal solution. Vaira and Kurasova [11]

propose a parallel single pair shortest path algorithm that finds the exact shortest

path by deploying a bidirectional version of Dijkstra’s algorithm on a multi-core

CPU. They report that their algorithm is almost three times faster than the

sequential implementation of Dijkstra’s algorithm. Given a graph, their algorithm
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deploys one thread to span from the source node and another thread to concurrently

span from the target node. The algorithm terminates once those two threads meet at

an intermediate node. This approach is valid because the shortest path property

guarantees that the shortest path from the source node to the target node is on the

shortest path from the source node to some intermediate node and on the shortest

path from that intermediate node to the target node. However, this two-thread

approach is limited as it cannot be easily extended to utilize the hundreds or

thousands of threads available in a GPU. In addition, the straightforward termi-

nation condition is no longer valid for multi-threaded (more than two-thread)

scenarios.

The parallel implementation of Dijkstra’s algorithm proposed by Harish,

Vineet, and Narayanan [9, 10] is targeted for the single source, multiple targets

shortest path problem. In this paper, a parallel version of Dijkstra’s algorithm for

the single-pair shortest path non-negative weight problem is proposed and deployed

on a graphics processing unit (GPU). The approach can be extended to the longest

path problem as well. In our implementation, a bidirectional search is deployed by

initiating search from both source and target nodes concurrently. This addresses the

issue of idle threads in the GPU that normally occurs at the beginning of the

computation, and it is also useful for graphs with linear structure. The contributions

of this paper are as follows. First, we propose a bidirectional parallel search

algorithm for GPGPUs. Second, we introduce a termination condition for multi-

threaded parallel search. Finally, we describe a search pruning technique. Exper-

imental results indicate a 2� speedup over the parallel method that performs a

parallel search from the source with early termination on the GPGPU. The

performance speedup comes from the parallelism exploited by traversing the graph

from both directions concurrently, along with early termination and search pruning.

2 Methodology

2.1 Algorithm overview

Dijkstra’s algorithm is iterative. In the first iteration, the source node is associated

with a zero-weight cost. On each iteration, the shortest path calculation expands

from the nodes already considered to their neighbors. In this paper, to better utilize

the available threads in a GPU, we initiate concurrent searches from both the source

node and the target node simultaneously. We define the forward shortest path cost

as the cost computed from the source node to each of the other nodes as in the

original Dijkstra algorithm. We also introduce the backward shortest path cost,

which is the shortest path cost computed backward from the target node to each of

the other nodes. On the first iteration, the forward shortest path cost of the source

node and the backward shortest path cost of the target node are associated with

zero-cost values. All forward and backward shortest path costs expanded from the

source node and the target node are concurrently computed as shown in Fig. 1. We

define S as the set of nodes expanded from the source side (shown in red in Fig. 1)

and T as the set of nodes expanded from the target side (shown in blue in Fig. 1).

Finally, set P ¼ S \ T contains the intermediate nodes (shown in purple in Fig. 1)

at which the expansions from S and T meet or converge. Each node in P has both a
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forward and a backward shortest path cost. Each update for a node in P computes

the sum of the forward shortest path cost and the backward shortest path cost to that

node. The element of P with the smallest summed cost gives the current shortest

path cost from the source to the target in the graph. On each iteration, we expand

the forward and backward shortest path costs from each of the nodes in P to their

neighbors. We then recompute the minimum forward shortest path cost and

minimum backward shortest path cost for all active nodes in S and T. By active

nodes, we mean the nodes whose forward/backward shortest path costs are updated

in a given iteration, regardless of which set they belong to. The algorithm

terminates early if the current shortest path cost from the source to the target is

less than or equal to the sum of the minimum forward shortest path cost among the

active nodes in S and the minimum backward shortest path cost among the active

nodes in T. The monotonic property of path costs in the non-negative weighted

graph dictates that the algorithm will not be able to find a lower cost path from

the source to the target than the current shortest path cost unless there is an active

node with forward or backward shortest path cost lower than the current shortest

path cost.

Search pruning can further reduce the required computation time. We can stop

search expansion from an active node if the value of the forward or the backward

shortest path costs at that node exceeds the current shortest path cost from the

source to the target. One example is shown in Fig. 2. In this example, the expansion

fronts meet in the second iteration at node b, and the current shortest path cost from

the source node to the target node for this iteration is set to 18. The current shortest

path cost is compared with the forward/backward shortest path costs for all the

other active nodes. The monotonic property of the path cost can be used to prune

impossible active paths. For instance, suppose node d is expanded from the source

in the third iteration, and its forward shortest path cost is equal to 20. We can stop

expanding the search from node d, since the cost of any shortest path expanded

from node d must be 20 or higher, which is greater than the current shortest path

cost (18). Note that although we can conclude that node d’s current shortest path

cannot be on the shortest path from the source to the target and can prune node d as

an active node, later, we may further expand search from node d to its neighbors if

a new path updates node d with a lower forward cost. Similarly, for the backward

search, we can stop expanding from node e (backward path cost 45 � 18) unless

and until some later update to its shortest path cost.

2.2 Algorithm details

The main algorithm, specified in Algorithm 1, operates on the CPU. The algorithm

accepts a positive weighted graph G (described by vertices V, edges E, and weight

valuesW), a source node s, and a target node t as inputs. In the algorithm, lines 1–4

perform initialization. The variable completed is used in the termination condition.

The variable CurrCost records the current smallest cost of the path from the source

to the target in the graph. The variables MinF and MinB record the minimum

forward cost from the source node over all active nodes and the minimum back-

ward cost to the target node over all active nodes. These values are updated on each

iteration. LatestMinF and LatestMinB are temporary variables for MinF and MinB,
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Fig. 1. Graph search expansion. (a) Initial state. (b) Expansion after a
few iterations. (c) Overlapping expansions.

respectively. Finally, the variable iter counts the number of iterations. In lines 5–6,

the algorithm invokes the Mark_thread and Expand_nodes GPU kernel functions.

Lines 7–15 check the early termination condition. The algorithm terminates early

when MinF þMinB � CurrCost, as shown in lines 8–10. Note that MinF and

MinB are calculated for every node whose forward or backward cost is updated in a

given iteration, not only the nodes in P.
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Algorithm 1 Parallel_Shortest_Path ðgðV; E;WÞ; s; tÞ
1: Call Init_variables kernel

2: LatestMinF ¼ INT_MAX, LatestMinB ¼ INT_MAX

3: do

4: completed ¼ 1, MinF ¼ INT_MAX, MinB ¼ INT_MAX,

5: Call Mark_thread kernel

6: Call Expand_nodes kernel

7: if MinF !¼ INT_MAX and MinB !¼ INT_MAX then

8: if MinF þMinB >¼ CurrCost then

9: Call Substitute_CurrCost kernel

10: completed ¼ 1

11: else

12: LatestMinF ¼ MinF

13: LatestMinB ¼ MinB

14: endif

15: endif

16: while completed ¼ 0

17: return CurrCost

On each iteration, the search expands from each active node to neighboring

nodes. Before the expansion, the Mark_thread GPU kernel, as shown in Algo-

rithm 2, computes a node status indicating which sets (S, T, P, or none) each node

belongs to. The node status is based on the graph expansion depending on whether

the search comes from the source side, target side, or both, as shown in lines 2–11.

In this GPU kernel function, Llabels keeps the current forward shortest path cost

expanded from the source to all other nodes in the graph (the array’s size is equal to

Fig. 2. Search pruning to reduce the required computation time.
Node a is expanded from the source, while node c is expanded
from the target in iteration 1. On the second iteration, node b is
expanded from both the source and the target. Nodes d and e
are expanded from the source and the target, respectively, in
the third iteration. As nodes d and e currently have shortest
forward/backward path costs higher than the current shortest
path cost of 18, they may be pruned from further consideration
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the number of nodes in the graph). Similarly, Rlabels keeps the current backward

shortest path cost expanded from the target to all other nodes in the graph (the

array’s size is also equal to the number of nodes in the graph). A mark array M

stores the node statuses. For the threads that are active from the source side, the

algorithm checks whether there are any updates from the source, or equivalently,

whether the forward shortest path cost is less than its initial value (i.e.,

Llabels[idx] != INT_MAX). If this is the case, the current forward shortest path

cost (Llabels[idx]) must also be less than CurrCost, as previously explained

regarding the search pruning technique. In lines 2, 4, and 7, we compare

Llabels[idx] or Rlabels[idx] with CurrCost for search pruning purposes. If the

new forward or backward shortest path cost of the node is higher than the current

shortest path cost, further expansion from that node is not necessary. In addition, to

restrict calculation to the active nodes, the comparisons of Llabels[idx] with

LatestMinF and Rlabels[idx] with LatestMinB are added. Since we do not allow

negative weights in the graph, the current forward/backward shortest path costs

must be greater than the minimum forward/backward shortest path costs from the

previous iteration, respectively. Paths that are expanded from both source and target

sides update CurrCost if Llabels½idx� þ Rlabels½idx� is a new minimum (see lines

12–16).

Algorithm 2 Mark_thread (Llabels, Rlabels, M, CurrCost, LatestMinF, Latest-

MinB) Note that this kernel is executed in parallel for every node.

1: int idx ¼ getThreadID

2: if Llabels½idx� < CurrCost and Llabels½idx� >¼ LatestMinF then

3: M[idx] ¼ ’S’

4: if Rlabels½idx� < CurrCost and Rlabels½idx� >¼ LatestMinB then

5: M[idx] ¼ ’P’

6: endif

7: else if Rlabels½idx� < CurrCost and Rlabels½idx� >¼ LatestMinB then

8: M[idx] ¼ ’T’

9: else

10: M[idx] ¼ ’ ’

11: endif

12: if Llabels[idx] !¼ INT_MAX and Rlabels[idx] !¼ INT_MAX then

13: if CurrCost > Llabels½idx� þ Rlabels½idx� then
14: atomicMin(&CurrCost, Llabels½idx� þ Rlabels½idx�)
15: endif

16: endif

After the update of the node status by the Mark_thread GPU kernel, active

threads expand the forward/backward shortest path cost of the nodes neighboring

active nodes according to the Expand_nodes GPU kernel, shown in Algorithm 3.

Threads in S and P expand to outgoing neighbors as shown in lines 2–12. Each

thread calculates the new costs for outgoing neighbors one by one by summing the

current shortest path cost of that node (Llabels[idx]) with the weight of the edge
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connecting node idx with the neighbor. If the new cost is less than the current

shortest path costs for any of the neighbors, the thread updates the current shortest

path costs in Llabels for each of its neighbors using an atomic operation (see

line 5). If there is any update in the graph, the completed variable is set to 0

(line 9), forcing the expansion to continue in the next iteration. If there is no update

from any thread, the main algorithm can terminate the do/while loop (line 16 in

Algorithm 1).

Algorithm 3 Expand_nodes (gðV; E;WÞ, completed, MinF, MinB, Llabels, Rlabels,

M, CurrCost, iter)

1: int idx ¼ getThreadID

2: if M[idx] ¼ ’S’ or M[idx] ¼ ’P’ then

3: for all outgoing neighbors nidx of idx do

4: if Llabels½nidx� > Llabels½idx� þW [idx, nidx] then

5: atomicMin(&Llabels[nidx], Llabels½idx� þW½idx; nidx�)
6: if CurrCost < INT_MAX and iter % ITERATION ¼ 0 then

7: atomicMin(&MinF, Llabels[nidx]);

8: endif

9: completed ¼ 0

10: end if

11: end for

12: endif

13: if M[idx] ¼ ’T’ or M[idx] ¼ ’P’ then

14: for all incoming neighbors nidx of idx do

15: if Rlabels½nidx� > Rlabels½idx� þW½nidx; idx� then
16: atomicMin(&Rlabels[nidx], Rlabels½idx� þW½nidx; idx�)
17: if CurrCost < INT_MAX and iter % ITERATION = 0 then

18: atomicMin(&MinB, Rlabels[nidx]);

19: endif

20: completed ¼ 0

21: end if

22: end for

23: endif

Along the way, each thread updates MinF (the minimum shortest path cost

updated among threads from the source side in that iteration, lines 6–8). MinF is

used in the check for the early termination condition as shown in lines 7–10 in

Algorithm 1. Maintaining the value of MinF and MinB on every iteration is

compute intensive since it requires an atomic operation, and these variables are

shared among all nodes. Therefore, our algorithm only updates MinF and MinB for

nodes in P, where the expansions from source and target have met, i.e., when

CurrCost is less than INT_MAX (line 6). Another speedup technique is to update

the MinF and MinB variable at constant intervals (when iter % ITERATION ¼ 0,

where ITERATION is a constant value). The backward expansion (line 13–23) is

similar to the forward expansion, except that the direction of the expansion comes

from the target node instead of the source node.
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3 Experimental results

To evaluate our method, we used a GeForce GTX 480 with 480 CUDA cores on an

Intel E7500 computer as our experimental testbed. First, we modified Harish’s

original parallel shortest path algorithm for GPGPU [9, 10] (named as “Harish”) to

include the early termination condition (named Harish with Early Termination or

HET). The original Harish algorithm is targeted for the single source, multiple

targets shortest path problem. The HET algorithm is the same as the original Harish

algorithm except that HET algorithm terminates once the shortest path cost from the

source node to the target node has been found. The modification transforms Harish

into a GPGPU single-pair shortest path algorithm. To the best of our knowledge,

there has been no report of any other GPGPU single pair shortest path algorithm

based on Dijkstra’s method in the literature. We named our implementation Parallel

Source and Target Search (PSTS). We compute the runtime speedup of PSTS over

HET. Note that we also report the original Harish runtime. For the results reported

here, we set ITERATION ¼ 100 for PSTS. The study was performed on two sets of

benchmarks: the 9th Dimacs [12] and SSCA#2 [13] benchmarks. In all runs,

benchmarks, node 1 was chosen as the source, and node N was chosen as the

target, where N is the number of nodes in the graph. The execution times of Harish,

HET, and PSTS on the 9th Dimacs benchmark with source ¼ 1, target ¼ N are

shown in Table I. The number of nodes and edges in each benchmark graph are

also reported as #Nodes and #Edges in the table. HET/PSTS shows the speedup of

PSTS over HET. From the results, PSTS outperforms HET by 2:23�. The observed
speedup is greater than 2.0 because of the search pruning in PSTS.

The second experiment uses the SSCA#2 graph model generated using the

Georgia Tech graph generator tool [13]. As with Dimacs, node 1 was chosen as the

source, and node N was chosen as the target. Table II shows the results with

ITERATION ¼ 80 for the PSTS case. In this benchmark, PSTS outperforms HET

Table I. Runtime comparison on the 9th Dimacs benchmarks
(source ¼ 1, target ¼ N).

Name # Nodes # Edges Harish HET PSTS HET/PSTS

NY 264346 733846 295 68 44 1.55

BAY 321270 800172 271 257 191 1.35

COL 435666 1057066 507 390 215 1.81

FLA 1070376 2712798 3227 614 805 0.76

NW 1207945 2840208 3604 1684 874 1.93

NE 1524453 3897636 2382 1214 379 3.20

CAL 1890815 4657742 5196 1181 274 4.31

LKS 2758119 6885658 13379 488 298 1.64

E 3598623 8778114 11818 6910 2912 2.37

W 6262104 15248146 19124 9931 3091 3.21

CTR 14081816 34292496 67074 19327 7993 2.42

avg. 2.23
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by 1:78� on average. We noticed that for some small graphs, PSTS’s performance

gain decreases. Factors such as the data structure and layout can affect execution

time. These effects on execution time are compounded by the number of nodes

to be updated in each step in the wave front set, which influences the current

minimum cost calculation time.

4 Conclusion

In this paper, we propose a parallel shortest path algorithm based on Dijkstra’s

method using a bidirectional search technique deployed on the GPGPU. Our

algorithm finds the exact shortest path cost by traversing nodes from the source

and the target in parallel, while applying early termination and search pruning

strategies reduce search time. Experimental results obtained when setting source ¼
1 and target ¼ N in the 9th Dimacs and SSCA#2 benchmarks show that our

implementation can, on average, provide a speedup of 2:23� and 1:78�, respec-
tively, over a parallel method that performs a single parallel search on the GPGPU

from the source to all other nodes but early terminates when the shortest path to the

specified target node is found.
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Table II. Runtime comparison on SSCA#2 with, weight range 1–100.

# Nodes Degree Harish HET PSTS HET/PSTS

65536 13 137 86 43 2.00

131072 17 369 73 73 1.00

262144 21 1516 227 113 2.01

524288 27 4561 4231 1538 2.75

1048576 34 15894 4220 3625 1.16

Avg. 1.78
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