
Informatics in Medicine Unlocked 19 (2020) 100323

Available online 28 March 2020
2352-9148/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Stretch Profile: A pruning technique to accelerate DNA sequence search 

Nalakkhana Khitmoh a,*, Sucha Smanchat a, Sissades Tongsima b 

a Faculty of Information Technology and Digital Innovation, King Mongkut ’s University of Technology North Bangkok, Bangkok, Thailand 
b National Biobank of Thailand National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Pathum Thani, 
Thailand   

A R T I C L E  I N F O   

Keywords: 
Sequence search 
Sequence retrieval 
Sequence profiling 
Pruning 

A B S T R A C T   

DNA sequence similarity search has been used by scientists to facilitate biological research. Over the years, more 
sequences are added to databases, making them constantly larger. Existing sequence search techniques usually 
focus on the improvement of sequence search algorithms to make the search faster, ignoring the possibility of 
reducing unrelated sequences from the search. This paper presents a pruning technique to accelerate DNA 
sequence search based on a novel Stretch Profile created from stretches of consecutive base characters: A-Stretch, 
C-Stretch, G-Stretch, and T-Stretch. The Stretch Profile is pre-generated for each sequence in a sequence data-
base. During the search, the Stretch Profile of the query sequence is generated for comparison. The sequences in 
the database whose profiles do not match the Stretch Profile of the query sequence are excluded from the search, 
resulting in the reduction of search space, and consequently, search time. 

For evaluation, we compare sequence retrievals from the Greengenes database and processing time when using 
only BLAST and when using the proposed pruning technique with BLAST. The results show that the proposed 
pruning technique can reduce the search time by 30.43% up to 63.74% depending on the length of input query, 
while maintaining a sensitivity of 1.00 when compared to the result of the original BLAST search.   

1. Introduction 

The development of bioinformatics is a result of advances in both 
molecular biology and computer science in the past few decades. Bio-
informatics has been used to transform the research process from the 
traditional methods [1] to the combination of data analysis and com-
puter simulation prior to conducting real experiments in wet lab to 
confirm result [2]. 

Researchers and scientists rely on tools and knowledge in bioinfor-
matics to manage data resulting from various genome projects. Nucle-
otide and protein sequencing leads to the development of data storage 
systems, sequence analysis, and interpretation of genetic data [3]. 
Mathematics, statistics, and computer science are integrated to facilitate 
the understanding of gene expression control mechanisms, the rela-
tionship between different organisms, and the functions of DNA se-
quences [4]. 

DNA sequence search is one of the techniques in bioinformatics that 
identifies organisms that share similarity based on their biological se-
quences. Scientists use DNA sequence search to explain similarities be-
tween organisms that are useful in biological researches such as to 

identify the diversity and the functions of bacteria in an area of interest. 
Many techniques have been proposed for DNA sequence search such 

as BLAST [5] and its extensions. However, existing techniques usually 
focus on the improvement of sequence search algorithms, ignoring the 
possibility of reducing unrelated sequences from the search. We believe 
that, by feeding better input, existing sequence search techniques can be 
accelerated. This paper thus proposes a pruning technique for DNA 
sequence search by eliminating unrelated sequences from the search 
process. A novel DNA sequence profiling based on consecutive base 
characters called Stretch Profile is developed to facilitate the proposed 
sequence pruning. 

The remainder of this paper is organized as follows. Section 2 ex-
plains the existing work in DNA sequence search algorithms. Section 3 
explains the proposed Stretch Profile and the pruning technique. Section 
4 presents the experiment and the evaluation of the proposed work. The 
result is discussed in section 5 and the paper is then concluded in section 
6. 

* Corresponding author. 
E-mail addresses: s5707011910039@email.kmutnb.ac.th (N. Khitmoh), sucha.s@it.kmutnb.ac.th (S. Smanchat), sissades@biotec.or.th (S. Tongsima).  

Contents lists available at ScienceDirect 

Informatics in Medicine Unlocked 

journal homepage: http://www.elsevier.com/locate/imu 

https://doi.org/10.1016/j.imu.2020.100323 
Received 17 February 2020; Received in revised form 20 March 2020; Accepted 24 March 2020   

mailto:s5707011910039@email.kmutnb.ac.th
mailto:sucha.s@it.kmutnb.ac.th
mailto:sissades@biotec.or.th
www.sciencedirect.com/science/journal/23529148
https://http://www.elsevier.com/locate/imu
https://doi.org/10.1016/j.imu.2020.100323
https://doi.org/10.1016/j.imu.2020.100323
https://doi.org/10.1016/j.imu.2020.100323
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2020.100323&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Informatics in Medicine Unlocked 19 (2020) 100323

2

2. Existing works in DNA sequence search 

A genetic material or DNA, is a nucleic acid that stores the genetic 
information of an organism consisting of subunits called nucleotides. 
There are four types of nucleotides: Adenine (A), Thymine (T), Cytosine 
(C) and Guanine (G) arranged in a double helix shape [6]. The 
sequencing of the nucleotides affects the diversity and creates variances 
in the sequence of the DNA strands that are specific to each organism. 

The efficiency of the DNA search becomes critical as the DNA data-
base grow continuously. A sequence search usually takes a long time to 
find similar matching. Thus, the development of sequence search algo-
rithms is usually based on two objectives: increasing accuracy and 
reducing search time. Popular sequence search techniques utilize dy-
namic programming and heuristics [7]. 

A dynamic programming technique is the process of solving complex 
problems by dividing them into sub-problems that can be readily solved. 
In solving a complex problem, it is necessary to solve sub-problems and 
then combine the answers of those sub-problems into the answers of the 
complex problem. For example, Needleman-Wunsch’s algorithm em-
ploys similarity and distance measurements to find the relationships 
between two sequences, and keeps them as numeric values stored in the 
form of a matrix [8]. The Smith-Waterman algorithm also uses dynamic 
programming to perform local alignment to find the pattern of two se-
quences, to align the proteins or nucleotides using the matrix scoring 
system [9]. Although dynamic programming is able to give an accurate 
result, it is slow and requires high computational power. 

An alternative approach to dynamic programming is heuristics, 
which is faster but may not guarantee optimal results. One of the most 
popular DNA sequence searches using heuristics is the BLAST (basic 
local alignment search tool) algorithm [5]. BLAST fragments the query 
sequence into words of size 11 for DNA and 3 for protein. For an input 
word, neighboring words are generated. Then, the scoring function is 
used to measure the similarity of each neighboring word in comparison 
to the input word. Those words with the scores higher than a threshold 
are collected. BLAST then scans the database for the matching of the 
collected words. Once a match is found, the word is repeatedly extended 
on both sides until the score falls below the threshold. The similarity 
score is then calculated; a higher similarity score means that the 
sequence in question is more similar to the query sequence [10]. 

BLAT (BLAST-like alignment tool) [11] is a tool that uses sequence 
search for sequence alignment. Indexes of sequences are constructed and 
kept in memory, allowing for faster processing. The sequences of nu-
cleotides or sequences of proteins must be perfectly matched or nearly 
identical to be retrieved. Thus, BLAT is less flexible than BLAST. 

The search techniques proposed in later years incorporate indexing 
to improve search time. DSIM (Distance-based Sequence Indexing 
Method) [12] was developed to reduce the memory space through 
indexing and compression based on a video compression technique. 
Sequences in the database are indexed and compressed. The query 
sequence is first searched through the index based on a similarity dis-
tance between the sequences in the database and the query sequence. 
The index is updated when new sequences are added. This method re-
duces the processing time to search the entire sequence. 

In addition to index compression techniques to reduce memory 
space, the Hamming distance has been adopted in Hfwd2 [13] to 
calculate the similarity between sequences. In the first step, the DNA 
sequence is divided into windows of equal length. Subsequences of a 
query sequence are searched in the database, which is indexed using 
R-tree, based on Hamming distance. Thus, the similarity comparison of 
DNA sequences is faster and processes less data [14]. 

Many other indexing techniques have been proposed under different 
names. For example, suffix array [15] and suffix tree [16,17] find sub-
sequences called seeds in a DNA sequence database that are similar to 
query sequence, and keep them as index for further search to reduce 
database access. The qCluster technique [18] constructs clusters of 
similar subsequences call q-Gram to serve as index for the search. 

From the related work discussed in this paper, most of the existing 
techniques usually focus on improving the search algorithm. Although 
indexing has been used to improve the efficiency of sequence search 
algorithms, it may require large storage memory [16]. The proposed 
Stretch Profile in this paper, on the other hand, focuses on manipulating 
the search input by profiling DNA sequences based on consecutive base 
characters. 

3. The proposed pruning technique for DNA sequence search 

The main concept of the proposed pruning technique is to reduce the 
number of sequences to be searched by pruning or eliminating the se-
quences that should not satisfy the similar matching, improving the 
retrieval speed while maintaining accuracy. 

3.1. Stretch Profile 

For the pruning, we introduce a novel DNA sequence profiling to 
generate profiles of the input query sequence and the sequences in the 
database. We take to advantage that a DNA sequence is a combination of 
only four base characters (A, C, G, and T) to create a sequence profile. 
The proposed Stretch Profile is based on the observation that there are 
consecutive occurrences of each base character in a sequence. If the 
input query sequence has a certain length or stretch of consecutive base 
characters, then only the sequences in the database with equal or longer 
length of consecutive base characters should be searched. 

To create the proposed Stretch Profile, we use the longest stretch of 
consecutive occurrence of each base character. Thus, the Stretch Profile 
of each sequence is defined by four numbers, namely, A-Stretch, C- 
Stretch, G-Stretch, and T-Stretch. For example, if a sequence contains the 
longest consecutive of “GGGGGGGG”, the G-Stretch of this sequence is 
8. 

However, when searching for similar matching, it is necessary to 
accommodate possible mutation in the sequences. In other words, the 
search needs to include the sequences that are slightly different from the 
input query sequence. Thus, the longest stretch of consecutive occur-
rences must also consider a similarity rate. In this work, we consider 
three similarity rates of >60%, >70%, and >80%. For example, a sub-
sequence “CCCCTCACCGCC” would satisfy the similarity rate of >70% 
of “C”, thus the C-Stretch would be 12. 

To find the longest stretch of consecutive occurrences with a simi-
larity rate, we develop the Growing Stretch Window algorithm as shown 
in Fig. 1. The left pointer starts at the first base character of the 
sequence. The right pointer starts at the second character from the left 
pointer to form the initial window with the size of 3 characters (lines 
4–5). If the current window satisfies the similarity rate (line 9) then the 
largest window size is saved (lines 10–11). Then the right pointer moves 
to the next character growing the window size (line 13). 

With the initial window size of 3 characters, it is very likely that the 
initial similarity rate would not be satisfied in the case of one odd 
character. For example, “CCA” would have the similarity rate of 66% for 
C-Stretch, which is always below the >70% similarity setting. Thus, we 
introduce a fail chance (line 3). This fail chance allows the window to 
grow (without updating the stretch size) with the hope that the next 
character would make the window satisfy the similarity rate (lines 
14–16). This fail chance is restored if the window once again satisfies the 
similarity rate (line 12). 

With the fail chance, the window stops growing when it cannot 
satisfy the similarity rate in two consecutive characters. When this 
happens, the window is reset by shifting the left pointer to the next 
character and setting the right pointer to the second character from the 
left pointer (lines 17–19). The fail chance is also restored for the new 
window (line 20). The whole process is repeated until the left pointer 
reaches the end of sequence. The longest stretch of the character in 
question is then returned. An example of finding an A-Stretch using the 
Growing Stretch Window algorithm with the similarity rate of >70% is 

N. Khitmoh et al.                                                                                                                                                                                                                               



Informatics in Medicine Unlocked 19 (2020) 100323

3

depicted in Fig. 2. 
The Growing Stretch Window algorithm may not guarantee that the 

obtained stretch of consecutive occurrences is actually the longest in the 
sequence because it cannot look far ahead in the sequence. For example, 
a subsequence “GGTCGGGGGG” should satisfy the similarity rate of 
>70% for G-Stretch. However, the algorithm would encounter “C” at the 
fourth characters (with the preceding “T” consuming the fail chance). 
Thus, the window size is reset because the similarity rate at that point is 
below 70% before the right pointer reaches the further “G”s ahead. In 
this case, the G-Stretch would be 7 instead of 10. Despite this flaw, the 
Growing Stretch Window algorithm is simple and fast within the O(n2) 
complexity, where n is the size of the sequence. Our preliminary test 
shows that this algorithm is sufficient for generating the Stretch Profile. 

We have considered the other options to find the longest stretch by 
repeatedly scanning the whole sequence with fixed-size windows. 
However, it is impossible to find the correct window size unless every 
window size from one to the sequence size is tried. This would signifi-
cantly increase the processing time, which is not favorable. 

Using the longest stretch of consecutive occurrences allows the 
Stretch Profile to be created faster than a more costly approach of 
mining for specific patterns in each sequence that is usually used in 
existing indexing approaches. In addition, the Stretch Profile is generic 
so that it can be applied to any DNA sequence. The only drawback is that 
the Stretch Profile must first be created for every sequence in the data-
base. However, this overhead occurs only once for each sequence in the 
database with each similarity rate. 

3.2. Sequence pruning 

Sequence pruning is the process that prunes sequences in the data-
base by comparing the profiles of the sequences in the database and the 
profile of the input query sequence for similar matching. 

Once the Stretch Profile is created for every sequence in the data-
base, the sequences are then sorted in non-descending order for com-
parison during the search. Because the Stretch Profile is composed of 
four numbers for the four stretches, the sequences are sorted first based 

on A-Stretch followed by T-Stretch, C-Stretch, and then G-Stretch. Note 
that the stretches can be in any order; the efficiency would depend on 
the values of the four stretches across the whole database. However, 
with binary search employed for comparison, the effect of different 
stretch orders would be kept minimal. 

When scientists need to search the database for the sequences that 
are similar to a query sequence, the Stretch Profile of the query sequence 
is first created using the Growing Stretch Window algorithm. The Stretch 
Profile of the query sequence is then compared to the sorted profiles in 
the database using binary search. The sequences in the database with the 
Stretch Profile with all A-Stretch, T-Stretch, C-Stretch, and G-Stretch 
greater than or equal to those of the query sequence will be marked for 
the search process, while other sequences are pruned. With binary 
search, the complexity for comparing Stretch Profiles is kept minimal 
within O(log2n), where n is the number of sequences in the database. The 
output of the pruning is then fed to existing search algorithms such as 
BLAST. The process of the proposed pruning technique is shown in 
Fig. 3. 

With such pruning, fewer sequences will become input for the search 
process, thus reducing the time required to complete the search. It is 
possible in the worst case that no sequence is pruned because the 
stretches of the query sequence are very small. In such a case, the search 
performance will be reduced to the normal search process without 
pruning. 

4. Evaluation and results 

We evaluate the proposed Stretch Profile and the pruning technique 
in three aspects: sensitivity, reduction of input sequences, and search 
time. BLAST is employed as the core search algorithm for all evaluations. 
We also use the output of the original BLAST search as the baseline for 
all the experiments. 

Sensitivity indicates the performance of the proposed technique at 
finding the sequences that are retrieved by BLAST. For a good result, the 
sensitivity should be high. Note that it is not possible to measure the 
specificity and the precision of the proposed pruning technique. With 

Fig. 1. Growing stretch window.  

N. Khitmoh et al.                                                                                                                                                                                                                               



Informatics in Medicine Unlocked 19 (2020) 100323

4

Fig. 2. Example of generating Stretch Profile.  

Fig. 3. The process of the proposed pruning technique.  

N. Khitmoh et al.                                                                                                                                                                                                                               



Informatics in Medicine Unlocked 19 (2020) 100323

5

the original BLAST output as the baseline, the false positive and the true 
negative of the evaluation are not meaningful. 

4.1. Dataset and experiment setting 

For the experiment, we use the Greengenes database (http://greenge 
nes.lbl.gov) under the management of the University of Colorado and 
the University of Queensland, which contains 16S rRNA genes of bac-
teria. The database contains 1,075,170 sequences. The lengths of the 
shortest and the longest sequences are 1253 and 2368 characters, 
respectively, with the average length of 1396 characters. 

We also obtained an unknown bacteria sequence dataset from the 
Genome Institute, National Center for Genetic Engineering and 
Biotechnology, Thailand. The dataset is stored in FASTA format con-
taining 410,551 sequences. The lengths of the shortest and the longest 
sequences are 365 and 456 characters, respectively, with the average 
length of 412 characters. For simplicity, we further refer to this dataset 
as the query dataset. 

All the experiments are carried out on a desktop computer with Intel 
Core i7 3.4 GHz with 32 GB RAM. The proposed technique is imple-
mented in Python3. The BLAST software [19] is employed for sequence 
search using 4 processor cores. 

The evaluation is divided into two parts. The first part evaluates the 
effect of the similarity rate on the search. The second part evaluates the 
effect of the length of the query sequence. The evaluation process of the 
three parts is depicted in Fig. 4. 

4.2. Evaluation of similarity rate 

This section evaluates the effect of different similarity rates of the 
Stretch Profile on the search. The similarity rates considered are >60%, 
>70%, and >80% as mentioned earlier. The evaluation consists of five 
processes including selecting input query sequences, generating Stretch 
Profile, pruning the sequences, sequence search, and evaluating the 
results. 

For the input query, 100 sequences are randomly selected from the 
query dataset to search for similar matching in the Greengenes database. 
The Growing Stretch Window algorithm is then applied to the 100 input 
sequences and the entire Greengenes database to generate the Stretch 
Profiles. Each sequence (both in the input and in the Greengenes data-
base) is associated with three Stretch Profiles (one for each similarity 
rate). 

Table 1 list the overhead times required to generate the Stretch 
Profiles for all the sequences in the Greengenes database at the three 
similarity rates. As mentioned earlier, this overhead occurs only once. 

The improvement of search time would cover this overhead in the long 
term. 

During the pruning, the profiles of the input sequences are compared 
to the profiles of the sequences in the Greengenes database with the 
same similarity rate. Binary search is employed in the comparison. After 
pruning, only the sequences that are marked for search will be consid-
ered as the input for sequence search. For simplicity, we refer to these 
marked sequences as the pruned database as shown in Fig. 4. 

Two searches are then performed for comparison: original search and 
the proposed pruned search, both employing BLAST software as the 
search algorithm. The output of each search is a text file containing the 
identity numbers, the names, and the percentage of similarity to the 
input sequence. For the evaluation, we are only interested in the names 
of the retrieved output sequences. We consider a search correct when the 
top five bacteria names in the output of the pruned search are similar to 
those found in the output of the original BLAST search. The results of this 
experiment is shown in Table 2. The second and third columns show the 
mode values of the stretches in the sequences (not the mode of the 
profiles). 

From the experiment result in Table 2, at a similarity rate of >60%, 
the proposed pruned search reduces the average search time by almost 
half (1.91 s per sequence against 3.31 s per sequence, approximately 
42.30%). This is due to the reduction of the number of sequences to be 
searched (599,017 remaining sequences against 1,075,170 total). 
However, the sensitivity, although high, indicates a deviation from the 
result of the original BLAST search. The similarity rate of >60% allows 
the stretches of the input sequence profile to be longer, with the modes 
of (8, 12, 9, 8), when compared to those of the other similarity rates. The 
longer stretches result in more sequences being pruned from the data-
base. However, it also prunes the sequences that should be in the search 
resulting in the reduced sensitivity. 

At the similarity rate of >80%, the proposed pruning technique 
provides the search result similar to those of the original BLAST search 
with the sensitivity of 1.00. The average search time improves by 
51.96% (1.59 s per sequence against 3.31 s per sequence) due to the 
shorter stretches, with the modes of (5, 8, 5, 4), and thus the smaller 
reduction of the number of sequences to be searched (459,327 remain-
ing sequences against 1,075,170 sequences total). 

Fig. 4. Evaluation process.  

Table 1 
Overhead time for generating Stretch Profiles of Greengenes database.  

Similarity Rate Time (s) Average time per sequence (s) 

>60% 40,138.61 (over 11 h) 0.0373 
>70% 34,571.42 (over 9 h) 0.0322 
>80% 35,094.01 (over 9 h) 0.0326  

N. Khitmoh et al.                                                                                                                                                                                                                               

http://greengenes.lbl.gov
http://greengenes.lbl.gov


Informatics in Medicine Unlocked 19 (2020) 100323

6

The similarity rate of >70% also provides the similar search result to 
those of the original BLAST search with the sensitivity of 1.00. In 
addition, the improvement of the average search time is the highest 
among the three settings (0.98 against 3.31, approximately 70.39%) due 
to the largest reduction of the number of sequences to be searched 
(297,017 remaining sequences against 1,075,170 total). 

4.3. Evaluation of query sequence length 

The experiment in this section aims to evaluate the effect of the 
different lengths of the input query sequences on the proposed pruning 
technique. The evaluation process is similar to the evaluation of the 
similarity rates with the addition of different input query sizes. Two 
similarity rates, >70% and >80%, are used in this experiment as they 
yielded a sensitivity of 1.00 in the previous experiment. 

Seven different sequence lengths of 500, 400, 300, 200, 150, 100, 
and 50 characters are evaluated to reflect the length of the query dataset 
in this experiment (ranging from 365 to 456 characters) and our actual 
use cases. To construct the input query sequences of these lengths, we 
first randomly select 10 sequences of different bacteria from the 
Greengenes database. Each of the 10 sequence is randomly cut into the 
10 subsequences of each lengths. Thus, each sequence will generate 70 
subsequences, totaling 700 subsequences for all 10 bacteria sequences. 

The Growing Stretch Window is then applied to generate the Stretch 
Profiles of the 700 subsequences. The Stretch Profiles of the Greengenes 
database have already been created from the previous experiment and 
can be reused. 

The pruning process is then applied resulting in the pruned database, 
similar to the previous experiment. The sequence search using BLAST is 
then performed on both the pruned database and the entire Greengenes 
database for evaluation. 

Similar to the previous experiment, we are only interested in the 
names of the retrieved output sequences. We consider a search correct 
when the top five bacteria names in the output of the pruned search are 
similar to those found in the output of the original BLAST search. The 
results of this experiment are shown in Table 3 and Table 4 for the 
similarity rates of >70% and >80%, respectively. The second column 
shows the mode values of the stretches in the sequences (not the mode of 
the profiles). 

For the similarity rate of >70%, the sensitivity is 1.00 for every 
length of input subsequence except for the query of 500 characters. The 
percentage of time reduction is lower for shorter lengths as depicted in 
Fig. 5. This is due to the reduction of the sequences to be searched. A 

longer query length contributes to longer stretches (as seen from the 
mode values of the stretches), and thus more sequences are pruned from 
the search. However, longer stretches may also prune the correct se-
quences from the search as observed in the query length of 500 char-
acters with the sensitivity of 0.94; this is the same effect observed in the 
case of a lower similarity rate discussed in the previous section. 
Considering the sensitivity of 1.00, the proposed pruning technique can 
reduce the search time from 19.58% up to 66.83%. In other words, the 
speed is approximately three times faster in the best case. 

For the similarity rate of >80%, the percentage of time reduction is 
also lower for shorter lengths as depicted in Fig. 6. However, the pro-
posed pruning technique can maintain the sensitivity of 1.00 in all 
lengths and can reduce the search time from 30.43% up to 63.74%. In 
other words, the speed is also approximately three times faster in the 
best case. 

It is noticeable that the time reduction is not in line with the trend 
when the input length is 150 characters with the similarity rates of both 
>70% and >80%. We attribute this to the random selection when 
constructing the input sequences for the experiment. 

This experiment shows that, with the similarity rate of >80%, the 
proposed pruning technique based on the Stretch Profile can be used to 
improve the processing time for DNA sequence search while maintaining 
1.00 sensitivity when compare to the original BLAST search. 

5. Discussion 

While existing techniques usually try to improve the DNA sequence 
search algorithm [11–13], the proposed pruning technique instead fo-
cuses on the sequences to be searched by eliminating the sequences that 
should not satisfy the similar matching so that the search process is 
accelerated. Unlike existing indexing approaches that need to find 
similar patterns to make the search faster [20] and may require large 
storage memory [14,16], our Stretch Profile is simple and generic by 
merely scanning for consecutive occurrences of the four base characters. 
The complexity of the Growing Stretch Window algorithm for gener-
ating the Stretch Profile of a sequence is O(n2) where n is the length of 
the sequence. In addition, being composed of only four numbers, the 
storage memory required for the Stretch Profile is very small and 
negligible. As the proposed pruning technique utilizes existing search 
algorithms such as BLAST, the complexity of the search itself is similar to 
the search algorithm employed. However, the search space is reduced by 
the pruning, which has the complexity of O(log2n) where n is the number 
of sequences in the database as the binary search is employed. 

Table 2 
Result of similarity rate experiment.  

Similarity 
rate 

Mode of stretches of query 
sequences (A,T,C,G) 

Mode of stretches of Greengenes 
database (A,T,C,G) 

Sensitivity Average number of sequences 
after pruning 

Average BLAST search time (s/seq) 

Original Pruned Time 
reduction 

>60% (8, 12, 9, 8) (11, 12, 11, 9) 0.97 599,017 3.31 1.91 42.30% 
>70% (6, 11, 7, 4) (7, 8, 7, 7) 1.00 297,017 3.31 0.98 70.39% 
>80% (5, 8, 5, 4) (6, 7, 7, 6) 1.00 459,327 3.31 1.59 51.96%  

Table 3 
Result of query length experiment at similarity rate >70%.  

Length of 
query 

Mode of stretches of query sequences (A,T,C, 
G) 

Sensitivity Average number of sequences after pruning (1,075,170 
total) 

Average BLAST search time (s/seq) 

Original Pruned Time 
reduction 

500 (6, 11, 7, 7) 0.94 224,735 3.81 1.14 70.08% 
400 (6, 11, 7, 4) 1.00 297,869 2.98 0.99 66.83% 
300 (6, 11, 7, 4) 1.00 422,931 2.39 1.05 56.16% 
200 (6, 7, 7, 4) 1.00 579,640 1.80 1.07 40.47% 
150 (4, 7, 7, 4) 1.00 831,894 1.89 1.52 19.58% 
100 (4, 6, 4, 4) 1.00 764,748 1.54 1.07 30.51% 
50 (4, 4, 4, 4) 1.00 885,713 1.22 0.86 29.51%  

N. Khitmoh et al.                                                                                                                                                                                                                               



Informatics in Medicine Unlocked 19 (2020) 100323

7

Our technique neither intervenes nor modifies the search algorithm 
(in this case, BLAST). It merely preprocesses the database and the query 
sequence before the search. Thus, the proposed pruning technique is 
applicable to any existing DNA sequence search algorithm. The only 
disadvantage is that the Stretch Profile must be generated for the se-
quences in the database and any new sequence being added to the 
database, which are then sorted. However, this overhead occurs only 

once and would be compensated by the reduction of search time in the 
long term. 

Two factors affect the performance of the proposed technique: the 
similarity rate for generating the Stretch Profile and the length of the 
input query sequence. As per the experiment, the similarity rate should 
be set to >80% resulting in the sensitivity of 1.00 when compared to the 
result of BLAST without using our technique. The search time can be 

Table 4 
Result of query length experiment at similarity rate >80%.  

Length of 
query 

Mode of stretches of query sequences (A,T,C, 
G) 

Sensitivity Average number of sequences after pruning (1,075,170 
total) 

Average BLAST search time (s/seq) 

Original Pruned Time 
reduction 

500 (5, 8, 5, 5) 1.00 354,186 4.55 1.65 63.74% 
400 (5, 8, 5, 5) 1.00 447,618 4.83 2.14 55.69% 
300 (5, 8, 5, 5) 1.00 520,315 4.12 2.14 48.06% 
200 (5, 6, 5, 4) 1.00 680,423 2.65 1.62 38.87% 
150 (5, 6, 5, 4) 1.00 789,446 1.84 1.28 30.43% 
100 (4, 5, 5, 4) 1.00 838,677 2.13 1.28 39.91% 
50 (4, 4, 4, 4) 1.00 1,018,292 2.09 1.42 32.06%  

Fig. 5. Comparison of time reduction at similarity rate >70%.  

Fig. 6. Comparison of time reduction at similarity rate >80%.  

N. Khitmoh et al.                                                                                                                                                                                                                               



Informatics in Medicine Unlocked 19 (2020) 100323

8

improved by 30.43% up to 63.74% depending on the input length. 
As for the length of the input query sequence, shorter lengths result 

in less sequences being pruned, leading to a lower reduction of search 
time. However, our current work is limited by the use of the Greengenes 
database. The effect of the query length may be specific to different 
datasets. The proportion of the query length to the length of the se-
quences in the database may also affect the sensitivity. Nevertheless, 
manipulating the length of the input query sequences may not be 
desirable in real use. Thus, our experiments serve to identify that the 
proposed pruning technique can be used to improve DNA sequence 
search time. For sensitive applications using other databases that require 
extremely accurate results, the proposed technique can be used for an 
initial result that is to be confirmed with an original search if necessary. 

6. Conclusion and future work 

In this paper, we propose a novel technique to accelerate DNA 
sequence search using a pruning approach. The pruning is based on the 
proposed Stretch Profile that is constructed from the length of consec-
utive occurrences of each base character. By comparison, the sequences 
in the database with the Stretch Profiles shorter than that of the input 
query sequence will be pruned from the search thus reducing the search 
size. The pruned database can then be searched using an existing algo-
rithm such as BLAST. According to the experiments, the proposed 
technique can improve the BLAST search time by 30.43% up to 63.74% 
while giving a similar retrieval output as the original BLAST without 
pruning. 

In future work, we plan to utilize the Stretch Profile to divide a 
sequence database into smaller partitions and distribute them to several 
computer nodes. This will facilitate a parallel and distributed search, 
because only the nodes with the matching profiles need to be searched. 
In addition, different DNA sequence datasets will be tested to further 
study the performance, the effect of input query length, and the effect of 
the similarity rate. 

Ethical statement 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors. 

Declaration of competing interest 

None. 

Acknowledgement 

The authors would like to express gratitude to Alisa Wilantho for her 

help in providing the data in the experiments. 

References 

[1] Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome 
sequencing (in eng) J Appl Genet 2011;52(4):413–35. 

[2] Horner DS, et al. Bioinformatics approaches for genomics and post genomics 
applications of next-generation sequencing (in eng) Briefings Bioinf Mar 2010;11 
(2):181–97. 

[3] Lee HC, Lai K, Lorenc MT, Imelfort M, Duran C, Edwards D. Bioinformatics tools 
and databases for analysis of next-generation sequence data (in eng) Brief Funct 
Genom Jan 2012;11(1):12–24. 

[4] Milicchio F, Rose R, Bian J, Min J, Prosperi M. Visual programming for next- 
generation sequencing data analytics (in eng) BioData Min 2016;9. 16-16. 

[5] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search 
tool. J Mol Biol 1990/10/05/1990;215(3):403–10. 

[6] Pal SK, Bandyopadhyay S, Ray SS. Evolutionary computation in bioinformatics: a 
review. Trans Syst Man Cyber Part C 2006;36(5):601–15. 

[7] Altschul SF, Boguski MS, Gish W, Wootton JC. Issues in searching molecular 
sequence databases. 1994/02/01 Nat Genet 1994;6(2):119–29. 

[8] Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. April 
1, 1988 Proc Natl Acad Sci Unit States Am 1988;85(8):2444–8. 

[9] Smith TF, Waterman MS. Identification of common molecular subsequences. 1981/ 
03/25/ J Mol Biol 1981;147(1):195–7. 

[10] Brooks LD, Weir BS, Schaffer HE. The probabilities of similarities in DNA sequence 
comparisons. 1988/10/01/ Genomics 1988;3(3):207–16. 

[11] Kent WJ. BLAT–the BLAST-like alignment tool (in eng) Genome Res 2002;12(4): 
656–64. 

[12] Xia C, Beng Chin O, Tung AKH, Hwee Hwa P, Kian L. DSIM: a distance-based 
indexing method for genomic sequences. In: Fifth IEEE symposium on 
bioinformatics and bioengineering (BIBE’05); 2005. p. 97–104. 

[13] Jeong I-S, Park K-W, Kang S-H, Lim H-S. An efficient similarity search based on 
indexing in large DNA databases. 2010/04/01/ Comput Biol Chem 2010;34(2): 
131–6. 

[14] Tan Z, Cao X, Ooi BC, Tung AKH. The ed-tree: an index for large DNA sequence 
databases. In: Presented at the proceedings of the 15th international conference on 
scientific and statistical database management, Cambridge, MA; 2003. https://doi. 
org/10.1109/SSDM.2003.1214976. Available. 

[15] Suzuki S, Kakuta M, Ishida T, Akiyama Y. GHOSTX: an improved sequence 
homology search algorithm using a query suffix array and a database suffix array. 
PLoS One 2014;9(8):e103833. 

[16] Hunt E, Atkinson MP, Irving RW. A database index to large biological sequences. 
In: Presented at the proceedings of the 27th international conference on very large 
data bases; 2001. 

[17] Barsky M, Stege U, Thomo A, Upton C. A new method for indexing genomes using 
on-disk suffix trees. In: Presented at the Proceedings of the 17th ACM conference 
on Information and knowledge management, Napa Valley, California, USA; 2008. 
https://doi.org/10.1145/1458082.1458170. Available. 

[18] Cao X, Li SC, Tung AKH. Indexing DNA sequences using q-grams. In: Zhou L, 
Ooi BC, Meng X, editors. Database systems for advanced applications: 10th 
international conference, DASFAA 2005, beijing, China, April 17-20, 2005. 
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 4–16. 

[19] Schloss DP. Mothur. 7/2/2020. 2008-2019. Available, https://www.mothur.org/. 
[20] Califano A, Rigoutsos I. FLASH: a fast look-up algorithm for string homology. In: 

Proceedings of the first international conference on intelligent systems for 
molecular biology (ISMB ’93); 1993. 

N. Khitmoh et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S2352-9148(20)30088-5/sref1
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref1
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref2
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref2
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref2
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref3
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref3
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref3
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref4
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref4
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref5
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref5
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref6
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref6
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref7
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref7
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref8
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref8
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref9
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref9
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref10
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref10
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref11
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref11
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref12
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref12
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref12
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref13
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref13
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref13
https://doi.org/10.1109/SSDM.2003.1214976
https://doi.org/10.1109/SSDM.2003.1214976
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref15
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref15
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref15
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref16
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref16
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref16
https://doi.org/10.1145/1458082.1458170
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref18
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref18
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref18
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref18
https://www.mothur.org/
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref20
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref20
http://refhub.elsevier.com/S2352-9148(20)30088-5/sref20

	Stretch Profile: A pruning technique to accelerate DNA sequence search
	1 Introduction
	2 Existing works in DNA sequence search
	3 The proposed pruning technique for DNA sequence search
	3.1 Stretch Profile
	3.2 Sequence pruning

	4 Evaluation and results
	4.1 Dataset and experiment setting
	4.2 Evaluation of similarity rate
	4.3 Evaluation of query sequence length

	5 Discussion
	6 Conclusion and future work
	Ethical statement
	Declaration of competing interest
	Acknowledgement
	References


