เทคโนโลยีป้องกันการปลอมแปลงข้อมูลชีวมิติในระบบยืนยันตัวตน (Biometric Anti-Spoofing) คือเทคโนโลยีและกระบวนการที่พัฒนาขึ้นเพื่อป้องกันการโจมตีหรือการปลอมแปลงข้อมูลชีวมิติ เช่น ลายนิ้วมือ ใบหน้า หรือม่านตา ซึ่งเป็นข้อมูลที่ใช้ในระบบยืนยันตัวตนทางชีวมิติ (Biometric Authentication) เพื่อไม่ให้ผู้ไม่หวังดีสามารถเข้าถึงระบบได้โดยการใช้วิธีการเลียนแบบข้อมูลเหล่านี้
เทคโนโลยีที่ใช้ในการป้องกันการปลอมแปลงข้อมูลชีวมิติ มีหลายรูปแบบ เช่น
- Liveness Detection (การตรวจสอบความมีชีวิต): เป็นวิธีที่ใช้เพื่อตรวจสอบว่าข้อมูลชีวมิติที่ถูกนำมาใช้นั้นมาจากสิ่งที่มีชีวิตอยู่จริง ไม่ใช่จากรูปภาพ วิดีโอ หรือวัตถุเลียนแบบ เช่น การตรวจสอบการเคลื่อนไหวของดวงตา หรือตรวจจับการไหลเวียนของเลือดในนิ้วมือในขณะสแกนลายนิ้วมือ
ตัวอย่าง: ระบบสแกนใบหน้าจะขอให้ผู้ใช้กระพริบตาหรือขยับศีรษะเพื่อตรวจสอบว่าเป็นบุคคลจริง ไม่ใช่ภาพถ่าย
- Multi-modal Biometrics (ชีวมิติแบบหลายรูปแบบ): เป็นการใช้ข้อมูลชีวมิติหลายประเภทในการยืนยันตัวตนพร้อมกัน เช่น การใช้ทั้งลายนิ้วมือและการสแกนใบหน้าในเวลาเดียวกัน ซึ่งช่วยเพิ่มความปลอดภัยเนื่องจากผู้โจมตีจะต้องปลอมแปลงหลายส่วนของข้อมูลชีวมิติ
ตัวอย่าง: ระบบประตูอิเล็กทรอนิกส์ที่ต้องใช้ทั้งลายนิ้วมือและการสแกนม่านตาในการเข้าถึง
- Challenge-Response Systems (ระบบท้าทาย-ตอบสนอง): ระบบนี้จะสร้างคำท้าหรือคำสั่งที่ต้องการการตอบสนองในทันทีจากผู้ใช้ เพื่อให้แน่ใจว่าข้อมูลที่ถูกยืนยันนั้นมาจากบุคคลจริง เช่น การขอให้ผู้ใช้ยิ้ม ขยับนิ้ว หรือมองไปในทิศทางที่กำหนด
ตัวอย่าง: การยืนยันตัวตนด้วยใบหน้าที่ขอให้ผู้ใช้ยิ้มเพื่อยืนยันความมีชีวิต
- Thermal Imaging (การใช้ภาพความร้อน): เป็นการตรวจจับความร้อนจากร่างกายมนุษย์เพื่อยืนยันว่าผู้ที่ถูกสแกนเป็นบุคคลจริง เช่น การใช้กล้องตรวจจับความร้อนเพื่อให้แน่ใจว่าใบหน้าที่ถูกสแกนนั้นเป็นของคนจริง ๆ
ตัวอย่าง: การสแกนใบหน้าด้วยกล้องอินฟราเรดเพื่อยืนยันว่ามีอุณหภูมิของร่างกายอยู่จริง
- 3D Recognition (การรับรู้สามมิติ): การใช้เทคโนโลยีตรวจจับภาพสามมิติ เช่น การสแกนใบหน้าแบบ 3D เพื่อยืนยันตัวตน โดยเทคโนโลยีนี้จะยากต่อการปลอมแปลงด้วยภาพถ่ายสองมิติหรือวิดีโอ
ตัวอย่าง: การสแกนใบหน้าด้วยเทคโนโลยี 3D ที่สามารถตรวจจับโครงสร้างของใบหน้าจากหลายมุมได้
ปัจจุบันเทคโนโลยีการยืนยันตัวตนด้วยข้อมูลทางชีวมิติ เช่น ภาพใบหน้า เป็นที่นิยมอย่างแพร่หลายในการยืนยันทำธุรกรรมการเงิน, ใช้จ่ายผ่านแอปคนละครึ่ง เป็นต้น เพื่อป้องกันไม่ให้ใช้ภาพถ่ายใบหน้าในการยืนยันตัวตน ซึ่งอาจมีการปลอมแปลง หรือนำมาแอบอ้างใช้แทนกัน หลาย ๆ แอปพลิเคชันจึงหันไปใช้การตรวจสอบในลักษณะการตอบสนองของผู้ใช้ เช่น กระพริบตา ขยับใบหน้าเข้า-ออก ซึ่งอาจไม่สะดวกสำหรับกลุ่มผู้สูงอายุ หรือผู้ที่มีปัญหาการขยับใบหน้า
สำหรับงานวิจัยที่เกี่ยวข้องกับเทคโนโลยีนี้ ทางทีมวิจัยความมั่นคงปลอดภัยสารสนเทศ ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ (NECTEC) สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) ได้นำเทคโนโลยีป้องกันการปลอมแปลงข้อมูลชีวมิติในระบบยืนยันตัวตน (Biometric Anti-Spoofing and Deepfake Technology) โดยใช้เทคโนโลยีปัญญาประดิษฐ์ประเภทโครงข่ายประสาทเทียมแบบคอนโวลูชัน (CNN) ที่จะจำลองการมองเห็นของมนุษย์ที่มองพื้นที่เป็นที่ย่อย ๆ มีความแม่นยำสูง มาพัฒนาปรับแต่งโครงสร้างก่อนนำมาใช้เทรนกับชุดข้อมูลภาพ ซึ่งสามารถประยุกต์ใช้กับระบบโมบายแอปพลิเคชันที่ใช้ในการยืนยันตัวตน เพื่อใช้ตรวจจับการปลอมแปลงภาพถ่ายใบหน้าได้ว่าเป็นภาพของผู้ใช้จริง ไม่ใช่ภาพใบหน้าที่มาจากภาพถ่าย (2D) และได้มีการพัฒนา ระบบลงเวลาด้วยการยืนยันตัวตนแบบครบวรจร (AtTime) แอปพลิเคชันที่ช่วยให้การลงเวลางาน เข้า-ออกงาน เป็นเรื่องง่ายด้วยการสแกนใบหน้า แก้ปัญหาการลืมพกบัตรพนักงาน เสียเวลารอคิวต่อแถวลงเวลา ลายนิ้วมือไม่ชัดเจน และยังสามารถลงเวลาได้ทุกที่ ทุกเวลา ตอบโจทย์การทำงานในรูปแบบ Work@Anywhere ด้วยระบบการยืนยันตัวตนอย่างปลอดภัย 4FA (Four-Factors Authentication)ประกอบด้วย ใบหน้า, สถานที่ที่กำหนด, รหัสผ่าน และโทรศัพท์มือถือ สนใจใช้งานระบบ AtTime ติดตามรายละเอียดเพิ่มเติมได้ที่ http://attime.secteam.in.th/